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The dyadic formalism is applied to cosmological models, and leads to a convenient set of first-order
ordinary differential equations. The Bianchi-Behr type of any model is shown to be constant in time,
regardless of the state of the matter content. The case of perfect fiuid matter content is formulated. Type
V models and Type VIII and IX models with incoherent matter are discussed, and some consistent
subtypes delineated. The Gddel Hamiltonian for symmetric Type 1X models is derived and generatized.

I. INTRODUCTION

In 1950 Taub! considered spatially homogeneous
empty world models. These space-times admit locally
a three-parameter group of motions which is simply
transitive on each member of a one-parameter family
of geodesically parallel, spacelike, three-dimensional
hypersurfaces covering the manifold. He introduced a
mathematical formalism to construct such world
models as solutions of Einstein’s field equations.
The formalism is based on geometrical results which
go back to Lie, Ricci, Bianchi, Fubini, and Cartan;
it uses Gaussian coordinates based on the family of
homogeneous hypersurfaces, and introduces a basis
set of three linearly independent vector fields e® in
each hypersurface. These vector fields have the prop-
erties that (a) their inner products, say ¥ (a, b =
1, 2, 3), are constants within any given hypersurface,
(b) they have vanishing Lie derivatives with respect
to the geodesic gradient vector field normal to the
hypersurfaces, and (c) their curls in the hypersurfaces
are given by a set of structure constants C% which
algebraically characterize the group of motions. The
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! A. Taub, Ann. Math. 53, 472 (1951).

fundamental form of the 3-spaces then becomes
do® = y,e* - dxe’ . dx, and for the space-time ds* =
do® — dr®. The matrix v, is inverse to y*’; i.e., it is
formed from the inner products of the dual basis e,.
According to Bianchi’s analysis of three-parameter
Lie groups,? there are nine algebraically inequivalent
types of three-dimensional spaces admitting a simply
transitive group of motions. Within each of these
types the y°* are arbitrary, while the C¢ are determined
up to a nonsingular constant affine transformation.
Assuming the “Bianchi type” of the hypersurfaces to
remain the same throughout the entire four-dimen-
sional manifold, the C¢ can be taken as a canonical
set of constants, ones and zeros. Einstein’s field
equations give in the most general case a very compli-
cated system of six coupled second-order ordinary
differential equations for the y* as functions only of
the time coordinate ¢ that labels the hypersurfaces.
Heckmann and Schiicking® have reformulated
Taub’s method for spatially homogeneous universes
with incoherent matter. Previously known special
world models of this type are Einstein’s static universe,
Friedmann’s isotropic cosmologies, and Gédel’s
2 I. Bianchi, Mem. Soc. Ital. Sci., Ser. IIla, 11 (1897).
# 0. Heckmann and E. Schiicking, Gravitation: An Introduction

to Current Research, L. Witten, Ed. (John Wiley & Sons, Inc., New
York, 1962), Chap. 11.
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rotating universe. Heckmann and Schiicking refer to
this and other previous work, and find a few addi-
tional solutions containing expansion and shear, but
no rotation. Behr* has studied certain more general
cases.

Behr® has introduced a classification of spatially
homogeneous cosmologies differing somewhat from
that based on Bianchi type. Let 4" = }C}e™*'. The
vanishing or nonvanishing of 4'*), and the rank and
absolute value of the signature of 4" are invariant
under constant affine transformation. By these
criteria 10 inequivalent types are distinguished.
Specializing the basis e®, and taking account of the
Jacobi identity, 4% can be put into the form

a n 0
A=\ —n b 0], where nc=0.
0 0 ¢

TasLe 1. Bianchi-Behr classification of homogeneous cosmo-
logical models.

Model type n* Signa Signb Signc Bianchi type
I 0 0 0 0 I
I 0 + 0 0 11
Vi, 0 + + 0 VII
VI, 0 + - 0 VI
IX 0 + + + IX
VIII 0 + + - VI
v + 0 0 0 A4
v + + 0 0 v
VII, + + + 0 vII
VI, + + - 0 VI, I

In Table I we summarize the Bianchi-Behr types in
terms of these parameters. In two cases, denoted by
Behr as Types VI, and VII,,, the type is subclassified by
a continuous invarjant parameter /1 = #%/ab. Behr has
further obtained coordinate components of the
specialized e®’s expressed in terms of a, b, ¢, and n, so
that the invariant differential form e® - dx is explicitly
known for each of the cosmological models.

In the present paper we recast the cosmological
problem in terms of the dyadic formalism. A super-
ficially quite different mathematical formulation
results: In particular, we now deal with sets of first-
order differential equations. This, plus the fact
that all quantities in this formalism have immediate
physical interpretation, gives rise to the hope that
further exact solutions or at least further easily
analyzable subcases can be found.

4 C. G. Behr, Z. Astrophys. 54,268 (1962); 60, 286 (1965); Astron.
Abhandl. Hbg. Sternwarte 7, 249 (1965).
5 C. G. Behr (to be published).
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We recapitulate the general dyadic approach to
general relativity in Sec. II, and then specialize the
equations to the cosmological problem. In Sec. III
the Bianchi-Behr classification is found to emerge
naturally in the dyadic formalism. We prove that—
unless a singular state occurs—the cosmological
principle alone implies constancy of the Bianchi-Behr
type (even to the parameter 4) of the homogeneous
spacelike hypersurfaces throughout space-time, re-
gardless of the state and evolution of the matter con-
tent. We consider the matter content in Sec. IV, and
derive dyadic expressions for the acceleration, rotation,
shear, and expansion of the matter congruence in the
case of perfect fluid. As an example of the dyadic
approach, the equations for Type V models with
incoherent matter are explicitly discussed in Sec. V.
In Sec. VI we consider cosmologies of Types VIII
and IX with incoherent matter, and are able to
recover and generalize some elegant results previously
announced without proof by Gédel.

II. DYADIC EQUATIONS

As a physical theory, 3 + 1 Riemannian geometry
takes a convenient form as four asymmetric first-order
dyadic differential equations®?:

Va-—(é+wa——wa)+(S.2+waZ)xl
=8:8S—2xS—-SxQ+2Q2 — (O] — aa
+A+T+i(p—2TrT - A, )
VR +SxV=—-2aR+ (a- 2} +B+txl, (2

N + $*. N = $*7 x (V + a)
+(V+a)-(—-wil, (3)
VxN=—-INTIN+E+(Q -S%x1l, (4

where

S =S —(R-w) x|, $*'=8 1+ (Q —w)x I,

(%)

and
—E=A-T+ {(TrT-2p— A)l
+ iS55+ 2R + Qw + w. (6)

This completely general formulation is based on an
arbitrary timelike reference congruence kinematically
described by three-vectors of acceleration and vorticity
a and £, and by a symmetric rate-of-strain dyadic S.
The trace of S is the expansion, the trace-free part
the shear, of the reference congruence. The 3-space

¢ F. B. Estabrook and H. D. Wahlquist, J. Math. Phys. 5, 1629
(1964).

“ H. D. Wahiquist and F. B. Estabrook, J. Math. Phys. 7, 894
(1966).
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orthogonal to the timelike reference congruence is
spanned by an orthonormal spacelike triad reference
vector frame having angular velocity w and nine triad
rotation coefficients N. It is a quotient space (V)
unless & = 0; in this case the antisymmetric part of
Eq. (4) is a familar differential identity implying a
3-metric, Eq. (6) is a Gauss equation for this induced
metric, and E, its Einstein curvature dyadic, satisfies
the 3-dimensional Bianchi identity V.E = 0. The
operator (°) is differentiation along the timelike con-
gruence; the operator V is covariant differentiation in
the quotient space. The usual vector operations - and
x serve conveniently to make explicit the consequences
of the signature of space-time, which here leads to a
positive-definite quotient space.

Of the 36 first-order equations in (1), (2), (3), and
(4), 20 serve to define the Riemann tensor compo-
nents®: T, t, and p are, in Einstein’s theory, identified
as the symmetric stress dyadic, momentum density
vector, and energy density (in relativistic units); A
and B are symmetric and traceless, respectively, the
so-called “electric” and “magnetic” local components
of the Weyl tensor. A is the cosmological constant.

The timelike reference congruence we adopt in the
following, to reduce the space-time of a world model,
is the normal congruence of the homogeneous sub-
spaces. The cosmological principle requires any scalar
formed from the induced metrical structure on any
of these, or from its second fundamental form, or
from the timelike normal congruence fo be constant
in the 3-space, and so not to allow any geometric or
kinematic means of intrinsic identification of the
points in the 3-space. Thus first the angular velocity
of the reference congruence & = 0; moreover, since
the acceleration a of this congruence is then express-
ible as the gradient of a scalar potential ¢,” and
since all scalars are allowed to be functions only of
time, we immediately have also a = 0. This is the
dyadic proof that the reference congruence is geodesic;
i.e., that the homogeneous subspaces are geodesically
parallel. (In general, this reference congruence will
not coincide with the world lines of the matter.) Under
these circumstances the dyadic formulation becomes
quite simple: The remaining variables of the problem
are just the symmetric rate-of-strain dyadic § of the
reference congruence (which is here also the second
fundamental form of the 3-spaces) and the asymmetric
Ricci rotation dyadic N that describes the intrinsic
metric geometry of the 3-spaces.

8 There is a slight notation change here from Refs. 6 and 7. There
the cosmological term in the field equations, if any, was incorporated
in Tyy and so in T and p. Here we write it explicitly, and T, t, and p
describe just the local physics.
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In the world models considered in the present paper,
there is always the possibility of three intrinsically
defined orthonormal reference vector congruences. in
the homogeneous 3-spaces. Adopting these, the com-
ponents of any dyadic quantity appear as intrinsic
scalar fields. In Ref. 6 we defined a differentiation
operation D which operates only on the components
of dyadic quantities. As all intrinsic scalars are to be
constant in the 3-spaces, the differentiation operator
D applied to any quantity gives zero. So to obtain the
covariant 3-space derivatives of any vector V or
dyadic M we use the identities®

VV=DV—-NxV, (7
V.M=D-M—-N”xM—-2n-M, (8)
VUxM=DxM+ (TrN)M

— N7.M - NT{M, (9)

putting, henceforth, DV =0 and DM = 0. We use
the notation that N = NS —n x 1 where NS is
symmetric. N7 = NS + n x L.

From (2), we can solve for B and t in terms of N
and S:

B—txl=—(TrN)S+ NZ.S 4+ NTS. (10)

This equation is traceless. Equation (4) gives E in
terms of N:

E=(TrN)N — N7.N — INTIN, (11

the antisymmetric part of which is an identity which
must be satisfied by N,

Nx N=0, (12)
or
F-n=0, (13)
where we define
F = NS — (Tr N)I. (14)

n is thus an eigenvector of the symmetric dyadic
F, with zero eigenvalue. (This is the dyadic guise taken
by the Jacobi identity of the underlying 3-parameter
isometry group!) We henceforth use F and n in
preference to N. The trace of (6) gives p, and from
(I1) the 3-space curvature is described by

= —2F-F+ (TrF)F—nx F+ Fxn

— 3[I(Tr Fy? — F:F + 22)1. (15)

The dyadic A is now given, interms of F, n, S, and T
by the trace-free part of (6).

There remain six equations in (1) and nine equations
in (3), which give the time behavior of the variables
S, F, and n. These are the first-order differential
equations which state the mathematical problem at
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hand, solutions of which are relativistic homogeneous
cosmologies:

é-}-wa——wa
= 2T — (TrS)S —2F-F 4+ (TrFF —nx F
+Fxn+ [TrT+ A + HTrS)2 — 4S:§
+ 3F:F — Y(Tr F? + in?)), (16)
FroxF—Fxw=S-F+F.S— (TrS)F,
)]
18)

In these equations « may be chosen arbitrarily
(Ref. 6) and, as we will see, T is to be given by local
physical considerations to complete the differential
set.

We do not labor the essential equivalence of the
dyadic approach and the approach described in the
Introduction (Ref. 5), but this equivalence is perhaps
obvious after one recognizes the algebraic identity of
the components of the dyadic N — (Tr N)t = F —
n x 1 and the tensor density 4°* belonging to the basis
here being used. In the dyadic approach this vector
basis u* in the 3-spaces is once and for all time faken
orthonormal, so that for it the inner products y** =
diag (1, 1, 1) everywhere, rather than being functions
of time. Moreover, the field equations are cast as
first-order equations for the variables in N, which
now are functions of time, together with the variables
in S, the components of the second fundamental form
of the immersed homogeneous 3-spaces. In the present
formulation, the final integrations to obtain the metric
explicitly as a function of holonomic coordinates are
deferred until all the triad Ricci rotation-coefficients
N are known—the essential mathematical problem
being the determination of these latter. Local physical
quantities of interest are always algebraic functions
of § and N. We will only briefly discuss such a final
integration to determine a metric form in the next
section.

f+wxn= —n-S.

1II. CONSERVATION OF BIANCHI-BEHR TYPE

We may now make a choice of intrinsic triad
reference vectors in each successive homogeneous 3-
space. Such a choice determines w. The choice which
usually appears to be most convenient for the present
problem is to everywhere diagonalize F; furthermore,
using Eq. (13), we choose the direction of n:

a 0 0
0 b 01,
0 0 ¢

Fob = n=(0,0,n), nc=0.

(19)

ESTABROOK, WAHLQUIST, AND BEHR

Inserting this into (17) and (18), we write in com-
ponents first the differential equations for the eigen-
values of F and the magnitude of n:

d = (S — Sa2 — Sa)a, 20)
b= (—Sy + Sp — Se)b, (21)
¢ = (=S ~ Sy + Su)e, (22)
o= — Sy, 23)
and next the equations which give w:

wn = Syn, (24)

Woht = ~— Sy, (25)
(b — ¢) = Su(b + ), (26)
we(c — a) = Sz (¢ + a), (27)
wg(a — b) = Sy(a + b). (28)

We may from the form of Egs. (20)-(23) immedi-
ately draw the conclusions that in any given cosmo-
logical solution, irrespective of the physical content
(described by the stress T, which we have not yet
specified), (a) either n vanishes or does not vanish for
all time, and (b) that @, b, and ¢ are each either zero,
positive, or negative and remain so for all time, unless
a singularity occurs and our differential analysis fails.
Thus we arrive precisely at the type of classification
scheme already given by Behr (Table I). Type VI,
and VII, homogeneous 3-spaces are further classified
by the value of /4, where

h = n?lab. 29)

Bianchi Type IHI is the subcase of Type VI, when
h = ~1. From Egs. (20)—(23) we quickly find

h=0 (30)
so that, again, this parameter classifies globally such
cosmological models.

We wish to call attention to the structure we have
found for the differential equations for a, b, ¢, and
n—that the setting of any of these equal to zero
implies that its first, and higher, derivatives are zero,
and hence that it remains zero so long as all quantities
are bounded. By setting such a variable equal to zero,
we consistently reduce by one the number of differ-
ential equations in the set, and so have a classifiable,
distinct subtype of cosmological model at hand for
solution. Again, it may happen that if several variables
of a set (for example, for perfect fluids, the three
variables in t) are simultaneously set equal to zero,
that an equal number of the first-order differential
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equations are identically satisfied, and that the set of
relations continues to remain zero as time progresses.
Such relations have been discussed by Levi-Civita,®
who denotes them “invariant relations” or “invariant
sets” with respect to the set of »n ordinary first-order
differential equations being considered. Such relations
serve to separate and classify the congruence of tra-
jectories describing the general solution, in the n-
dimensional space of dependent variables, by means
of subspaces which are themselves not crossed by
trajectories. We will denote such variables and sets
as IR variables and IR sets. We regard the classifying
of solutions of a complete set of first-order differential
equations as equivalent to the recognition of IR
variables and IR sets,

We further wish to remark that the present result,
the conservation of Bianchi-Behr type, is a conse-
quence of the cosmological postulate without reference
to the field equations (i.e., irrespective of the state of
the matter content). It is purely a consequence of the
3 4+ 1 Riemannian geometry and is contained pre-
cisely in our dyadic Eq. (3). The set of relations (3) is
not at all easy or natural to express in more conven-
tional tensorial terminology, and yet is vital for the
completeness of the total set of relations in Egs. (1),
(2), (3), and (4), that they together describe the
geometry of 3 + 1 Riemannian space-time. It is
an advantage of the dyadic formalism that the set in
Eq. (3) is explicit.

So, then, adopting the Bianchi-Behr classification,
we are left with the problem of integration of complete
first-order sets consisting of six equations (16) and of
four equations (20)-(23), where from one to four of
the latter vanish identically for any given type. [In
some cases, however, this situation may be improved
upon further by a different choice of w in Egs.
(16)-(18)—we will illustrate this in Sec. V.] After
integration of the first-order set giving F, n,w, and S,
the local physics is everywhere known for the model.
However, it sometimes may be desired to go further:
to obtain an explicit space-time metric as in Sec. L.
Indeed we already have at hand a set of coordinate
components of invariant triads e for each Bianchi
type (Ref. 5) (these are functions of particular canon-
ical coordinates x*, where « = 1, 2,3, and constant
structure parameters,say Fi® and n,, , or, if specialized,
just aq, by, cq, and n,). But now how are their inner
products to be found? We introduce a matrix of
affine transformation C¢% connecting the invariant

% T. Levi-Civita and U. Amaldi, Lezioni di Meccanica Razio-
nale (Nicola Zanichelli, Bologna, 1926), Vol. II, pp. 339-353; cf.
also J. A. Schouten, Ricci-Calculus (Springer-Verlag, Berlin, 1954),
p- 215.
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basis e® and the orthonormal basis n?,
e’ =Couw’, so e*-e’=y?=C"C"0% (31)
@ =0 by definition, and €* = —w x e* — S.¢°

because the e* have the property of being comoving
with the reference congruence (Ref. 7). Thus, for
the unfolding affine matrix C% and its transposed
inverse C;? we find the equivalent differential equations

C.ab - e-bcdwdctlc + Sbccflc = 0,
Gyl = €,0a0,C — Sy Cit = 0,
ldet C%|" = —(Tr S) |det C%|.

(317)

It is these coupled linear equations which finally must
be integrated, so that the y,(f) can be calculated.
Nine integration constants are at first sight required,
but the solutions C9(¢), as is easily shown from
Egs. (17) and (18), will satisfy tensor-density-type
transformation equations under the affine change of
basis:

(1) = Chingg,  FU(1) = |det C| CICYF . (32)

Thus, knowing the constants ny, and F¢* for a given
Bianchi-Behr type, Eq. (32) fixes a number of the
integration constants. The extent to which the integra-
tion constants remain arbitrary expresses the so-called
automorphism group of the invariant basis.

In practice, since we usually take F diagonal, and
n aligned, and since the canonical 3-space metrics
given by Behr in Ref. 5 are similarly specialized in the
forms Fi* = diag (a,, by, ¢o) and ny, = (0, 0, ny), the
arbitrariness allows the C¢% to be taken quite special,
ab initio. For example, in Type IX, we may write
the matrix of C% as just

gt 0 0
cr=( 0 bt o

o o0 ¢
+ 0 0o
vt o
1

'3 % 3 orthog-\ /a

S (33)

x | onal matrix: 0
3 parameters 0 0 ¢

where f = (ab clay b, co)¥ |det orthogonal matrix|™1,
and there are but three functions to be found from
the last integration.

1IV. THE MATTER CONTENT: PERFECT
FLUID, INCOHERENT MATTER

We consider now the choice of matter content for
these cosmological models. We already have, from
Egs. (6) and (10), the local energy and momentum
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densities p and t (as seen by an observer whose con-
gruence is the reference congruence with a = & = 0):
p = H(TrS)? — S:S — F:F + }(Tr F)2 — 6n* — 2A},

(34)
t=4FxS— (TrS)n+ 3n-S}. 35)

Furthermore, we may directly calculate from these
(or use the contracted Bianchi identities in dyadic
notation) the conservation laws,

p=—(TrS)p+ T:S 4 2n-t, (36)
t+twxt=—(TrS)t—t-$—3n.-T
+(TrTm—FxT. (37

It remains to specify the expression of the stress
dyadic T in terms of t and p, for insertion in Eq. (16).
For a perfect fluid, for example, we have

T=—pl—(p+ o't (38)

where p is the pressure. A noteworthy result of this
relation is that Eq. (37) then becomes such that t = 0

implies t = 0. We recognize the same structure as we
met in Eqs. (17) and (18): tis an IR set, and subtypes
with t = 0 may be formulated for cosmologies with
perfect fluid matter content.

The velocity 4-vector of a fluid is the timelike
eigenvector of its energy-momentum tensor. If the
reference tetrad components of this unit 4-vector are
written as A" = y(1,V), where y=(1 — V- V)$,
we define the fluid 3-velocity V. In a proper frame
moving with this velocity, a proper observer will
measure pressure p and proper density, say pp. From
(38), pp and V are then found to be related to p and
tb

S etV V=t -t (9
It is usual in cosmology to describe the kinematics of
the matter content in the comoving or proper frame;
i.e., by the acceleration pa,, rotation .2, , shear
10,5 and expansion 50 of the A" congruence:
pay = A A0 K = A+ pagdy,
POrs = A(r;s) + Pa(r}‘s) - ':li'l’o(grs + Zr}‘s)5 Po = lfr

(40)
We can describe this kinematics of the matter con-
gruence in dyadic language, and also use clocks
moving on the reference congruence, by introducing

vectors a and Q. a symmetric dyadic &, and a scalar
6 according to

- < 0 —-QxV
a, = y(—a-V,d), Q. = (_ - ),
1 7( )s 1 4 OxV —Oxl
pra=y(V IV TV 0=l @
—V.o G
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To calculate these, we expand Eq. (40) in the ortho-
normal reference frame, thus introducing its kinematic
quantities S, a, and 2—the last two, however, are
zero in the present case. We use Eq. (7) to calculate
VV, and find V from (36) and (37):

V4+wxV=V.-FxV4+n-VV — V2
—V:.S+V-S.VV—[p/i(p+ pIV.

The final result is

= —[*pl(p + PIV,
—IV.-F—inxV,
6=4Vn+nV)—n-VI+ (VxF—-FxYV)
+ S — [¥'p/(p + PIVV — 30(1 + 2VV),
2 V4TS — V.SV — 2%/ + p)l.
43)

To repeat, these are the quantities which describe the
proper kinematics of the matter congruence in 3-
dimensional language based on the reference con-
gruence. Using (39), they are calculable from S, F,
n, and p. p must be given by local physical consider-
ations to complete the first-order set of equations for
these variables.

The following may each be shown to be an IR
set or variable: V; y; V-F;t-F;nx V;t-F.t; Q.
For example,

Q+wxQ=[S+{n-V+V-S.V—-TrS$
— pl(p + P11+ Q,

7==V-S:-Vy = [V%/(p + p)l,

(t-F-t)=32n-V —TrS)t-F-t.

Thus the presence or absence of any of these may be
used to classify cosmologies with perfect fluid content.
We have not, however, found any IR sets involving
the matter shear and expansion & and 6. Whenn = 0,

the last of Eq. (44) leads immediately, with Egs. (20)-
(22), to a first integral of angular momentum

t- F.t/(det F)® = const.

(42)

(44

(45)

As an example of completion, we consider now, and
henceforth in this paper, the case of incoherent (or
dustlike) matter, p = 0. The right sides of the first-
order differential set of equations [(17)-(18)] can be
shown to be analytical functions of the dependent
variables when p [given by Eq. (14)] is nonzero. The
fundamental theorem for such a set guarantees the
existence, uniqueness, and analyticity of solutions so
long as all quantities remain finite. Thus the mathe-
matical requirements which we previously invoked in
discussing invariant relations are clearly satisfied. In
this incoherent case, we have, naturally, the density
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p as an IR variable:

p={=TrS —V.85.V + 2n-Vjp (46)
From (44) and (46) we find an integral
3V « F . V/p = const. CY))

In vector-free cosmologies (n = 0), as we will see
in Sec. VI, this may be combined with the integral of
angular momentum to yield a local conservation law
for energy. We will in the next two sections consider,
respectively, Type V, and Types VIII and IX, with
p =0, to illustrate these various relations.

V. TYPE V COSMOLOGIES

To illustrate the above considerations, let us put
F = 0 and p = 0. This we know that we may con-
sistently do, since F is an IR set from Eq. (17). Let us
now choose w so that S is everywhere diagonal. The
three off-diagonal equations in (16) give w. We are
left with six first-order differential equations for
solution: the diagonal equations in Eqs. (16) and
(18).

For incoherent matter, with A =0, the right-
hand sides of these equations are homogeneous of the
second order in the variables S}, , Ssa, Sa3, 1, Ha, 3.
The only nonquadratic terms are those from the
matter tensor: T = —p~'tt, t and p being quadratic
functions of the variables, according to Egs. (31) and
(32). The equations nevertheless appear impossible
for explicit solution. Rotation is in general present.
We note that the integrals (45) and (47) become
empty for such a special Bianchi-Behr type.

The rotation-free case occurs when the IR vector
V x n vanishes. Now we find @ = 0 and V and n to
be eigenvectors of S—we take them to be in the 3-
direction. With the new variables § = S;; + Sy, + Si3
to describe the expansion and o = S;; — S, and
T = —S85; — S5 + 25,3, to describe the shear (of the
reference congruence!), we have a set of four equations
for solution:

¢ = —0o,
7= —0r 4 p7l%?,
0= —16% — 1p7172n2 4 3\ — 30% — L72 4 2n2,
= —30n ~ fon, (48)
where
4p = 20° — 162 — L7% — 602 — 2A. (49)

One first integral has been found: n = CV(1 — V2)-3,
where 2pV = n and C = const.

We note that ¢ and = are separately IR variables.
The subcase o = 0 is, interestingly, of Petrov type D.
The subcase 7 = 0, which is the case when all of

503

t = 0, is especially simple. Now two integrations may
be performed, and in the remaining equation the
substitution » = R' leads immediately to the “gen-
eralized Friedmann equation” given by Heckmann
and Schiicking (Ref. 3, p. 445). Indeed, from Eq. (11)
we have the curvature of the 3-spaces to be E = —n?l,
isotropic for all Type V models, so R is of course seen
to be the Gaussian curvature.

VI. TYPE VIII AND IX COSMOLOGIES
In Eqgs. (24)-(28) we insert n = 0 and p = 0 and
solve for w. The equations for a, b, ¢ are (20)-(22);

for the components of § we refer to (16). Let us
denote these last by

¢ v T
Sp,=1v x ¢ (50)
T 0 Yy

Thecomponents of t are given by (35): 21, = (b — ¢)o,
and 2 cyclic permutations. The complete set of 9
first-order equations for a Type VIII or IX cosmology
with incoherent matter is

d=(d—x—1yla (51

together with 2 cyclic permutations;
é + 27%c + a)/(c — a) — 2v%(a + b)/(a — b)
=—@+x+yd+ (—a+b+ o)
+1p70%b — o — 1p e — @)
— 1o i@ — b + 4A
+ x4+ xp + pb — 0 — 72 — 1?)
+ §(a® + b® + % — 2ab — 2bc — 2¢ca) (52)
together with 2 cyclic permutations;
¢ + 2uvr(be — a?)/(a — b)(c — a)
+ a(x — )b+ )b —¢)
=tp7lor(c —a)(a — b) — (¢ + x + ) (53)
together with 2 cyclic permutations.

By cyclic permutations we mean simultaneous
permutation of ‘the 3 triplets (abc), (¢xy), and (a7v).
We recall from (34) that
4p = 2(¢x + xyp + yd — 0* — 2 — 1?)

— @+ D>+ c?) 4 ab+ be+ ca—2A. (54)

As we have seen, there are precisely two first inte-
grals of these equations, which can be found because
of the special form of the matter terms. The first of
these is a proper energy integral,

8p/(yabc) = 2H, (55)
Where H = O, y = (1 — VZ)—% — (1 — P_ztz)__%, as
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before, is the Lorentz factor relating interval along
the matter congruence to interval along the reference
congruence.

The second integral expresses conservation of
angular-momentum density in the proper frame:
a(b — ¢)?e* + b(c — a)*r? 4 c(a — b)W?*

= 1K*H%a*b%c®, (56)
where K = 0.

We now specialize to the symmetric case treated by
Godel!® and Behr?: It is clear from the above that any
two off-diagonal terms in S, say 7 and v, are an IR
set, and by setting them simultaneously equal to zero
we consistently reduce the set of simultaneous
differential equations by two, i.e., 7 and v then stay
zero. Now t and V are only in the 1-direction, and we
are left with just

6+ (x=polb+ /(b —c)=—($+x+ y)o,
(57
p=—(p+x+pp+(—a+b+ca
+1p7atb — o + $A
+ 2(gx + Xy + pg — %)
+ 3@ + b* 4+ ¢ — $(ab + bc + ca),
¥=20*b+ )b —c)—(+x+yx
+(a— b+ b — Lplab — O + A
+ 3(@x + xp + ypd — %)
+ &(a® + 6% + ¢®) — %(ab + bc + ca),
P = =205 + (b — ) — b+ x + yly
+ @+ b—c)c—tpto?(b — ) + A
+ Hpx + vy + yd — 0%) '
+ #(a® + b* 4 ¢*) — ¥(ab + bc + ca),

(58)

d=($—x—9pa,

b= (—¢ +x—= 'P)b, »

(= (—¢—x+yk
Eq. (57) may be omitted, and o eliminated from (58)
by virtue of the integral (56), which now reads

(59

a(b — ¢)*c* = }KEH*a*h3co. (60)
We will write (55) again as
8plabc — 2yH = 0, (61)

or explicitly,

4(abe)ex + xp + wd — FKH2*PA (b — ¢)2
— Ha® + b2+ B+ L(ab + be + ca) — A}
— 2H[l 4+ K%c]} = 0. (62)

10 K. Gédel, Proc. Intern. Congr. Math., 1950, Vol. I, pp. 175-181.

ESTABROOK, WAHLQUIST, AND BEHR

Scrutiny of this last expression has enabled us to
discover a connection between the present formulation
of the symmetric Type VIII and IX cosmologies, and
the Lagrangian announced by Godel.'® If we introduce
variables p, and g, (« = 1, 2, 3) by setting

9= (bo)™, (63)
p1=2¢%(x + y)g;* and cyclic permutation, (64)

and cyclic permutation,

where

q = 1929, (65)

the expression (62) takes the functional form

H(qa> pas T, —H)
= 297 [}(q192mD2 + d2d5P2Ps + dsd:P5P)
— ¥(gip} + q3pi + 43p3
— }K*H%q2q4(92 — q2)° — 2Aq
— 3qi + 43 + 43) + (0192 + 9245 + 939))]
— 2H[1 + K% =0, (66)

and this is an “energy equation,” in the terminology
of Synge,!! for a symmetric canonical formulation of
our set of first-order equations (58) and (59); that is,
we take as four canonically conjugate pairs {g,, p;} =
{91, P15 925 P2 9s. ps; T, —H}; the equations
0i¢/dp; = g, and 03/dg, = —p, (- being a total
derivative with regard to an unspecified independent
variable, say w, again in Synge’s notation) give first
(i=1,2,3) exactly (58) and (59) and also give,
(i=4,

2[1 + K7 )¥ =T=y and H=0. (67)

Thus we see that w is to be interpreted as proper time
along the reference congruence (cosmological time 7);
T is interpretable as the ignorable coordinate con-
jugate to the energy constant H.

Godel’s Lagrangian is apparently the same as the
above symmetric Hamiltonian formulation, if the
sign of the “kinetic energy” terms (those quadratic
terms involving the p,) is reversed, and the ¢, used
instead of the p,. Such a formulation, however,
obscures the interpretation of the - differentiation, the
fact that numerically JC = 0, and the constancy of H
(which indeed is apparently normalized to the value
+1 by Godel). We also have included the cosmological
constant A,
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A closed form has been derived for the function «,(NML | a, r) introduced by Léwdin for two-center
integrals in molecules and solid states. This expression is general and applied to all values of /, L, and M.

I. INTRODUCTION

Usually, two- or multiple-center integrals are in-
volved when we deal with the structure and properties
of systems of atoms, molecules, and complexes.
Expressions for quantities such as electronic energy,
molecular-dipole and -quadrupole moments, fine- and
hyperfine-coupling constants, transition probabilities,
scattering coefficients, nuclear-magnetic shielding
constants, spin-Hamiltonian parameters, and various
other quantities, require the evaluation of electronic
integrals of one- and two-electron operators. These
integrals are computed with the help of molecular
orbitals formed out of atomic orbitals with the origin
at different centers. The methods of evaluation of such
integrals are based on either (a) the classical expansion
in spherical harmonics, first used by Coolidge' and
subsequently developed by Landshoff,? Lowdin,?
Barnett and Coulson* or (b) the transformation of the
integrand into a prolate-spheroidal coordinate system,
as developed by Roothan, Ruedenberg, Jaunzemis,
Wahl, Cade, and others.> The latter method is
convenient only when the atomic orbitals involved in
the integrals to be in the form of Slater-type orbitals
(STO). Using Slater-type orbitals, a number of closed
forms for two-center integrals involving one- and two-
electron operators have been described by Roothan
et al.® and Geller and Griffith.® These methods are not
suitable when numerically tabulated Hartree-Fock
functions or analytical wavefunctions, which cannot
be expressed as sums of exponentials, are used for the
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vanced Research Project Agency.
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computation of two-center integrals. In such cases one
has to use Lowdin’s a-function method.” This method
is of type (a) and uses an expansion of the atomic
orbitals (say ®yz3;) about one center in terms of
functions measured from the other center. Conse-
quently a two-center integral is reduced to a sum of
one-center integrals which can be easily evaluated.
The expansion of the wavefunction around one center
in terms of functions about the other center leads to a
sum of products of a radial part [designated as an
o function, that is, «,(NLM |a,r), “a” being the
distance between the two centers] and an angular
part Y(0, ¢), where / runs from zero to infinity and
r, 8, and ¢ are the coordinates with respect to the
new center about which the wavefunction @y, 4 is
expanded. This means that a wavefunction involving
a definite angular momentum L about first center is
equivalent to a combination of various angular
momenta on the other center. The a-function tech-
nique of Lowdin has recently been used by Ikenberry
and Das® for the evaluation of nuclear magnetic
shielding constants in alkali halides, by Knox® for the
calculation of excited-state wavefunctions, excitation
energies, and oscillator strengths for argon, and by
Smith?® for the investigation of the g factor of hydrogen
and alkali atoms trapped inrare gas solids. The same
technique has also been adopted recently by us'! for
the investigation of the overlap contributions to the
zero-field splitting parameters D and E occurring in
the spin Hamiltonian of paramagnetic ions. It has
been found in these cases that the o, (NLM | a,r)
functions are required not only for a few of the
smaller values of /, L, and M considered earlier by
Lowdin, but also for higher values of /, L, and M.
The lack of availability of the algebraic form of
a,(NLM | a, r) for higher values of /, L, and M is

? P.-O. Lowdin, Advan. Phys. 5, 1 (1956).
8 D. Tkenberry and T. P. Das, J. Chem. Phys. 43, 2199 (1965);
Phys. Rev. 138, A822 (1965).
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18 D. Y. Smith, Phys. Rev. 131, 2056 (1963).
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155, 338 (1967).
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particularly felt in the calculation of properties of
molecules and solids involving d and f electrons. The
purpose of this article is to present a closed and general
expression for the a function which applies to any
values of /, L, and M. Some of the standard mathemat-
ical relations used in this work have also been listed.
A general asymptotic expression for the o function, for
small values of r valid for all values of /, L, and M,
has also been presented. Finally, we have substituted
different values of /, L, and M in our general ex-
pression of the « function, and the results are compared
with Lowdin’s earlier expressions as a check of the
correctness of our formula. It should be remarked
that Coulson and Barnett’s {-function technique is
really a special case of « functions, appropriate to the
case of hydrogenic wavefunctions—that is, those
expressible as a single exponential.

II. DERIVATION OF A CLOSED
FORM FOR THE « FUNCTION

We are interested in deriving explicit forms for the
o, which hold for general values of /, L, and M.
Léwdin? had derived such expressions for a few of the
smaller values of /, L, and M. According to our defi-
nition of a,(NLM | a, r), we write

O(NLM | R, 0,0) = > (1/r)oay(NLM | a, )Y,*(6, ),

&)

where O(NLM l R, ©, ®) is the wavefunction of an
electron on the atom B to be expanded at the center
A which is at a distance *“a” away from the center B
(Fig. 1). The polar coordinates r, 6, and ¢ are the
coordinates of the electron with respect to the center
A as origin, while R, 0, and ® are the coordinates
with respect to B as origin, the axes being disposed in
the manner shown in Fig. 1.

According to Lowdin’s definition? of the « function,
which we denote by a%(NLM [ a, r), we have

O(NLM| R, 9,0)

= kyar S o8(NLM | a, PP} (cos 8)[C O MP  (2a)
=0 sin Mg

FiG. 1. The systems of axes used for the expansion of a wave-
function centered at B in terms of the o« (NLM | a,r) functions
centered at A.
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where
2L+ 1 (L— MN
kpa = [ mr— =T B EY 2b
LI ( A 477 (L+ M)') ( )
& =1, (2c)
=2 (v21), (2d)

and Lowdin employs real spherical harmonics instead
of the usual complex ones that we have used.
We can relate «; defined by (1) to Lowdin’s definition
«? [Eq. (2)] by the relation
Ocl(NLM, a, r) = KILJIVO((Z)(NLM | a, r)s (3a)

where

_{QL+ 1YL= MY+ Mn}
e ((21 + 1)(! = ML+ M)!) - o

The expansion of ®(NLM | R, ©,®) about 4
yields?
ANLM | a,1) = Qe | e RIROP(cos ©)
x PM(cos 0) sin 6 df, (4a)
where fy1.(R) is R times the radial part of

O(NLM | R, 0, D),
that is,

®(NLM | R, O, ®)

LB yau0,0) (4b)
- fVL(R) A cos MO
lk"‘" ——R P (cos B) Sin M® (4c)

and the coordinates of the electron in one system
(r, 0, ) are related to the other system (R, ©, ®) by
the relations

R2=a®+ r? — 2grcosl, (5a)

O =g, (5b)

—Rcos® + rcosf) =a, (5¢)
Rsin @ = rsin 6. (5d)

Changing the variable of integration in (4a) from 6 to
R with the help of the relations (5), we have

oY NLM I a,r)

(a+r)
= rlesp(ulan [ " 1y RPHZIPZ) d,

(6a)
where
Zy = —(a* + R* —r?)/2aR = cos ®  (6b)
and
Zy, = (a® + r* — R»/2ar = cos 6. (6¢)

In order to simplify expression (6a) we need certain
mathematical relations appropriate for Legendre
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polynomials. These are
P(Zy)
21\117%(23 — )M )M

TG - 12 = MDA + 12 — M/2)
X F(—=I[2 — M2, % + ]2 — M[2; }, Z3)
B W%2M+1Z2(Z§ — )y MRy M

'+ 12 — M/2(—1]2 — M/[2)
x F(d — 12— M[2,1 + 12 — M/2; %, Z3),
(7a)

where F(a, b; ¢, z) is the hypergeometric function
defined as

2 @u(

Fa,b;c,2) = . c#0, =1, =2,
n=0 (C)nn!
(7b)
(a) =1, (7¢)
_La+n_ 3
(@), = T(0) aa+ - (a+n—1),
n=123". (7d

In relations (7a) and (7d), I'(x) is the standard
Gamma function.
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(L — M)/2” (that is, the integral part of (L — M)/2;
for example, £ has quotient 1).
Making use of (6b) and (6c), we have

(1 = Z)/(1 = Z}) =r*|R*. ®

2 — 2™ /m RE V¢
7" = s 10a
! ( 2aR )q%(q)(az—— rz) (10a)

2= (2 S o

Further,

where
1
(m) - (10c)
q ql(m — q)!
and
P (—x) = (=D PY(x). (10d)
Now if we define
AY(R) = PY(Z)P}(Z,), (11a)

then Eq. (6a) becomes
«Y(NLM | a,7)

(a+1)

= (277/€M)(k21,M/‘1") o IfNLM(R)AﬂLIl(R) dR. (11b)

Making use of the expansion (7a) for P}{(Z,), the
expression (8) for P}(Z,) and the relations (9) and

o dXHiI (10) one can put the expression (11a) for A}(R) into
A - 57 N1 _ 72 2 _ \L p p i
P(Z) = AR = )" e, 7= 1, Do
(82) M (—I)L M
_ A, = rla
JL+M 2 1= (2L)19%-% M)/z(—l)"p e L= (r/a)
) 1 - r 4 n=o
dZ]_L—F‘M L r'=0 T'=Q}1- (ZL_J}I{I)/z
(8b) A 2) 2
(LY*(2L — 2r')! (80) X > Cg(r)[Bl — B, g(“;—;/)a)}
e = s n,7,q,9"=0
P = QDL = L= 27 — M)! . (R )_"L+2,,+ZQ+24, e (i20)
a , a
where qu. (L — M)/2 stands for ‘“‘quotient of where
-7 2L — 2r)!
ca— (- **@nieL = 2r) __ (120)
n'g'!2n +1 —q)lg(L—2r — M — ¢@)}(L— r)Ir"!
(r) _ (1 _ r2/a2)L—2r’—IlI—a(l + r2/a2)2n-q' o
g - 2L—2r’—1ll (zr/a)2n ( C)
_ 712 = MU2),G 12 = M[2),(2n —q' + 1) 124)
! DG — 12 — M/DT(1 + 12 — MJ2X1)2),
2744 — 12 — MJ2),(1 + 12 —
g, - 27 = 12 = MI2),(1 4 12 = M2),(2n + 1) (126

PG+ 12 — MI2)T(=1]2 — M[2)

The lower limits of n, r’, ¢, and ¢’ in the summations
in (12a) are zero, but the higher limits for #, r’, ¢, and
q' are o, quotient of (L — M)/2, L — 2r' — M, and
2n + 1, respectively. Equation (12a) gives only a
finite number of terms because the factorials, Gamma
functions, and (a), make the terms vanish after a
certain number of terms.

We can now simplify B, and B, as defined in (12d)
and (12e) with the help of standard relations:

I(T( — z) = m/sin 7z, (13a)

22710z + §) = THI(22). (13b)
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Thus
_sin{n(l — 1= MBA+M = D=2 = MG+ 12 =M2DCn =g’ + D 4
YT - MDA+ M) — 12 @
o sinln(—l+ M} (4 M) G2 MDA+ I2=MD) ) (g4

10— M — DML+ M — 1)

It is evident from (14a) and (14b) that

(2)n

g(r), By, and B, as defined by (12b), (12¢), (14a), and

(14b), and we define the new running index s as

B, =0 if /4 M = odd integer, (15a)
B,=0 if /+ M =eveninteger. (15b) s=r'"+q+4+4. (16)
Next, we substitute (12a) for 4% in (11b) with C, Finally, we obtain
(a+r)
«YNLM | a,r) = EZ DY’ fypu(R(R)+* dr, (17a)
la—r|
where
_1\L _ 1 M1 l M
Q@I+ 1) (=Y cos{[ + M)2]=}(1+ M — 1) ( ) (= Mm! if 1+ M = eveninteger, (17b)
gL 2CLH=M (| M+ M2 — 11! \a (+ M)!
= : M—2 2
2041 (—DEF sin {[(I + M)/2]=}(l — M)! (_’:) (1 + r_2) if I+ M = oddinteger (17¢)
L 2(2L+l+1—]11) [(l - M= 1)/2]| [(l + M- 1)/2]| a a
and
n0s70" o’ , , 27 2\2n—q’
D},Lls — (1/a23) z Ccl(l _ r2/a2)L~r —M—s+q (1 +r /az) (17d)
' n,r’,q'=0 (r/a) "
with
ny = quotient of (/ + M)/2,
ro = quotient of (L — M)/2,
gs = (2n) or (2n + 1) according as (I + M) is even or odd,
(=D *(2n)I2L — 2r)!
_ —, (17¢)
Mgt n+1—gNs—q —MIL—r —M—s + qg)(L—r)Fr122
and
(=12 — M/2) (3 + 1]2 — M[2)},(2n — q" + 1)/(}),, if |4 M = eveninteger, (17f)
B 3 —=1/2—=M/2), (1 + ]2 — M[2),(2n + 1)](), if I+ M = odd integer. (17g)

The expression (17a) is a general expression and
can, therefore, be used for any values of /, L, and M.
Knowing o«f from (17a) we can determine o, from

(3a), that is,
«(NLM | a,r) = K, 1, ro%(NLM | a,r),  (18)

where K, ,, is already defined in (3b).

In order to check our expressions (17) we compare
the expressions for a few « functions from the ex-
pressions (17) with those obtained by Lowdin.

A. Derivation of a(N10 |a,r)

In this case,

(19)

Since / + M is odd, we use (17¢) for E and (17g) for
C; . Substituting (19) in (17¢), (17d), (17¢), and (17g)
for E, D}*, C, and C,, we obtain

3 a r

E= I+ =), 20a
16a® »* ( az) ( )
ng=0,7ry'=0,7¢"=1 I’2 1—s+q’ r2 —¢

Dyt = 2 CCl(l - 7) (1 + 7) ,

n,r'q’ =0 a” a”
(20b)
—1)7
= o 2t 1,) —, (20c)
(I —g)g"'(s — g1 — s + g')!

G=1 (20d)
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Hence, from (17a) and (20), we have

«X(N10 | a,r)
-2)

- 8—3—2[(1
r
+ 22 [y (B) ar [ i (£) ar]

(21)
The expression (21) agrees with the corresponding
result obtained by Lowdin.
Similarly, by substituting/ = 1,L = 0,and M = 0,
in (17), we have

od(NOO | a, 1)
- 4—-;[ (1 + }?2) J Feoo(R) dR — f fvo(R) (f)zdR]
(22)

Also, for / =0, L =0, and M = 0, we have
1 (a+7)
(N0 | a, r) = — f Jveo(R)YdR.  (23)
2ar Jla—r|

ForL=1,/=1,and M =1 we get

-2 i
- (1 + ;r;) J f(R)de + % j F(R) (f)a dR}. (24)

Expressions (22), (23), and (24) also agree with
Lowdin’s expressions.

(N1l |a,r) = —

B. Asymptotic Form of « Functions for
Small r

For numerical evaluation of the « function [Eq.
(17a)] we have to compute the integral occurring in
Eq. (17a), which we denote by I:

(a+7)
U= [ fuuw (RRF dR. (25)
Jla—r|
For small r we can write
Savpala £7) = fypal@) £ rfyrafa)- . (26)

Retaining only the first term in (26) and substituting
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in (25), after integration we have
(@ + )y It — (Jg — |y EHH
a

@] T
I = if L—2s#1, (27a)

Funa(@ In {]“ + ’I} if L—2s=1. (27b)

a—r

For small values of r, since the integration (25)
occurring in (17a) cannot be performed very accurately,
we therefore use the relations (27a) or (27b), accord-
inglyasL—2s# lorL —2s =1,

C. Value of the « Function for r =0
For r — 0 Eq. (5a) yields

R ?0) a, (28)
and (6b) gives, for r = 0,
z; = —1 =cos 0. 29

Making use of

PY(—1) = (=2
and

fPlM(cos 0) sin 6 d6 = 26,0370,
from (4a), (2b), and (2c) for r = 0, we finally obtain

o(NLM|a, 0) = fN—L;—"(—“) (=128, 00350 (30)

The expression (30) has also been quoted by
Lowdin, and acts as a good numerical check in actual
computations.

In summary, we have obtained a general expression
for a(NLM|a,r) in Eq. (17) which permits the
evaluation of two-center integrals involving wave-
functions of any L. This expression includes as special
cases those derived by Lowdin for smaller special
values of /, L, and M. It is hoped that the availability
of this general expression for « will make it convenient
to use numerical Hartree-Fock atomic wavefunctions
in molecular and solid-state problems, as has been
the case more recently with analytic functions.
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We consider the version of the Lee model with relativistic kinematics. The mass renormalization of
the V particle, described in purely field-theoretic terms, is a nonlocal effect. We discuss the composite
limit of the model. The natural choice of composite field is nonlocal in the elementary constituents. In the
composite limit, Z; does not vanish. The Hilbert-space formalism of the composite theory is not equiv-
alent to that of an N-0 theory with a four-particle interaction. All these results are cutoff independent.

1. INTRODUCTION

In a recent analysis,! Yndurain pointed out that
when the Lee model is analyzed with relativistic
kinematics, the point-coupling limit of the model is
better behaved than when nonrelativistic kinematics
are used.?? The charge renormalization remains
finite, and no ghost states appear. These features
make the model particularly suitable for the investiga-
tion of various effects of the renormalization program.

In the present paper, we wish to discuss the follow-
ing questions. Is the renormalization a local process?
What happens to the theory in the limit Z, —0
(composite V particle)?

To make these questions more precise, we introduce
appropriate linguistic conventions. By the “Lee
model,” we will understand the Lee model with
relativistic kinematics, as discussed in Ref. 1. By the
“point limit” of the Lee model, we understand that
calculations in the Lee model are to be performed with
a cutoff, which will be removed in the end.

We discuss the N—0 sector of the model only. We
show that an operator may be introduced whose
Fourier components create physical one V-particle
states (eigenstates of the local Hamiltonian) and that
this operator is formed in a nonlocal fashion from
the bare V, N, 0 “fields” (Fourier transforms of the
creation operators), even in the point limit of the
model. We christen this object the totally renormal-
ized V field.

We study the composite limit of the model by letting
Z, — 0, as has been done in the conventional form
of the Lee model by various authors.4> We show that
the nonrelativistic nature of the model causes diffi-
culties in the definition of a vertex-function re-

* Present address: Magdalen College, Oxford, England.

1 F. J. Yndurain, J. Math. Phys. 7, 1133 (1966).

2T, D. Lee, Phys. Rev. 95, 1329 (1954).

38, S. Schweber, 4n Introduction to Relativistic Quantum Field
Theory (Harper & Row Publ., Inc., New York, 1961).

4]J. C. Houard, Ann. Inst. Henri Poincaré 2, 105 (1965), and
references quoted there.

5 P. K. Srivastava and S. R. Choudhoury, Nuovo Cimento 39,
650 (1965).

normalization constant. However we get round these,
Z, does not tend to zero with Z;, contrary to what is
observed in the conventional model. We discuss the
Green’s function equations for the composite V, and
note that the totally renormalized V' field gives a
particularly simple form. We consider the possibility
that the composite V' model is equivalent to a model
without a ¥V, with the N and 0 having a four-field
interaction. Although the S matrices are equal, as
follows from the general Green’s function theory of
composite particles,® the two theories cannot be
completely equivalent in the details of their Hilbert
space formalism. This arises from a combination of
renormalization considerations with the relativistic
kinematics, and contrasts with the situation observed
in simpler models.?

We discuss the effective coupling constant of the
composite model, illustrating ideas of Ref. 6. A
suggestion about the composite limit of a model with
two V particles® is shown to be specious. We point
out that in the present model, Z; = 0 does not arise
from “kinematic” considerations, as has recently
been suggested.

2. THE LEE MODEL

The free Hamiltonian is
H, = f Ex(V*(m)V(p) dp + f Ex(DN*()N(p) dp

+ f o(pa*(pa(p) dp. (1)

Here, V', N, a are annihilation operators for the
fermions ¥ and N and the boson 0. Ej-, £y, w are the
corresponding energy functions, which in the rela-
tivistic model have the form

Ep(p) = (M + p*),
E\(p) = (m* + p°)*,
o(p) = (W + pP)?,

§ M. M. Broido and 1. G. Taylor, Phys. Rev. 147, 993 (1966).
7 K. Sekine, Nucl. Phys. 76, 513 (1965).

(2)
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where M, m, p are the masses of ¥, N, 6 particles,
respectively. The interaction Hamiltonian is

H, = f dpdE, (@)Y *@)V(p)

T f dp dk[h(p, V* (N — Kak) + Hel (3)

where 0Ey(p) is the energy renormalization of the V/
particle:

2 Ih(p’ k)|2
SE,(p) = g°| dk . (4
H(p) gf Exp— k) + o0 — B
h(p, k) = f(p, WIEp(DEx(P — K)ok H; (5)

f(p, k) is a cutoff function taking the value unity in
the point-coupling limit. We retain it, following the
conventions set up in the Introduction.

The tractability of the model arises largely because
the N and 0 particles do not need renormalization.
Then if we demote the physical one-particle V state by
|V(p))q, it is given by

V(D) = Zé@){v*(p»o

T f dk®(p, YN*(p — KYa*(K),), (6)

where the state function ®(p, k) is, in the relativistic
case,

O(p, k) = —— h(p. k) .
(2m? Ex(p) — Ex(p — K) — (k)

Equation (6) is the solution of the one-particle problem
and tells us just what we want to know, namely that
if we regard the one-particle physical V' state as
created by a creation operator W*(p), the Fourier
transforms

W(x) = 2m) f dpe™ W(p)EX(p),

(7

V(x) = 2m) f dpe™ V(D) EX(D)ZL(p),

N = (2m)! f dpe” N(D)EX(p),
and so forth, are connected by the relation
W) = V(x) + f N(x — V)6(x — 2)F(y, 7) dy da.
(3

where
F(y,2) = f F(p, k) exp {i(py + kz)} dp dk  (9)
and
2f(p, WZh(p)
Ep(p) — Ex(p — k) — w(k) '

F(p, k) = (10)
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Then W(x), as given by Eq. (8), is our totally re-
normalized V field. N(x) and 6(x) are of course
already totally renormalized. Note that F(p, k) is in
fact independent of the coupling constant g.

Let us consider the properties of W(x). Most
strikingly, it is not point coupled, even in the point
limit of the theory (f = 1). Point coupling of W
would require F(p, k) to be a function of (p — k).
(There is also a nonlocality in the V term due to the
p dependence of Z,, a dependence whose effects we
will discuss in detail below, but this particular
nonlocality is less important.) We see from (10) that
this condition on F(p, k) cannot be achieved by any
sensible choice of f(p, k). For instance, if we choose
f(p, k) so that F(p, k) = 1, the integrals involved in
the (N-f)-sector S matrix, which are convergent even
for f =1, go badly divergent. Thus the totally re-
normalized field cannot be point coupled if the original
interaction Hamiltonian is.

As we can see from the spectral representation for
Zy, it is of the form

Z,(p) = f Y(p, K)[* dK,

where, if the masses are neglected, Y is a function of
(p — k) only. Hence in this approximation Z,(p) is
constant. Provided that M < u, the neglect of the
masses then causes F(p, k) to become a continuous
function of (p — k) in the point limit, and a direct
manipulation yields the approximate, local formula

W(x) = V(x) + gVN(x) . VO(x).

We do not know what to make of this odd relation.

3. RENORMALIZATION CONSTANTS

Only the V particle requires renormalization. The
mass renormalization is logarithmically divergent in
the point limit, as we see from Eq. (4) (compared
with the linear divergence in the conventional version).
We note that dM is proportional to g2.

The “wavefunction renormalization constant” Z;
appearing in-Eq. (6) is now no longer a constant as in
the static case, but is a function Z,(p) of the V three-
momentum. This need not cause any trouble provided
we carefully consider the relation between this Z;-(p)
and the wavefunction renormalization constant, say
Zy, of a fully relativistically covariant quantum
field theory. (After all, the main interest of the Lee
model is as a “model” of just this class of theories.)
Such a Z, is certainly a Lorentz scalar (and may be
computed® in terms of Green’s functions). If our
model were covariant, the Z;,(p) of Eq. (6) would be a
function of the appropriate four-momentum squared,
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and Z, would be related to Z,(M?%) and would re-
normalize the complete propagator of the theory.
But the model is quite fundamentally noncovariant,
independently of the relativistic choice of energies
(or of any other relevant form factors). With this
proviso, the function Z;,(p) will play the role of the
wavefunction renormalization constant, particularly
in discussing the possibility of a composite V' below.

Certainly Zy(p) is well defined and finite in the
point limit and is proportional to g2 (whereas in the
static model it is logarithmically divergent).

There is not general agreement in the literature
about a vertex-function renormalization constant.
We feel that it is most natural, following Ref. 1, to
define the renormalized coupling constant g, as the
residue in the pole at M2 in the N-6 scattering ampli-
tude A(s). In the point limit this gives!

LI
gr M
2 o 2 —1
X {1 + £ - p_dp 2
2M Jo En(p)o(P)[En(p) — w(p) — M]

(11)
If we could define a vertex-function renormaliza-
tion constant Z,; by

gr = Zi'Zyg" (12)

(in the conventional fashion), clearly Z, would be a
finite function of g, tending as g — co to a finite,
nonzero limit. Actually this analogy is not very useful
because of the p dependence of Z;,, but it does show
us that in no sense at all can Z; = 0 arise through the
limit g — o0, and suggests strongly that this will also
be the case in a full relativistic theory. We will refer
to this in our remarks on the composite limit of the
model below.

It is interesting to observe that for M = 0, the
renormalized coupling constant given by (11) is finite
and is independent of the bare one. This latter prop-
erty has been conjectured for quantum electrodynam-
ics (the photon corresponding to the massless V),
on the basis of perturbation theory.?

4. THE COMPOSITE ¥V LIMIT

In accordance with the general theory® we let V
become composite by letting Z,-(p) —0. In this
process, we must regard Zp,(p) as dependent on
appropriate further variables, and discuss how to vary
these. Such variables are the renormalized quantities
g, and M. (We could also include the N and 0 masses
m and u, but we will not be interested in the possible

8 M. Gell-Mann and F. E. Low, Phys. Rev. 95, 1300 (1954).

MICHAEL BROIDO

variation of the results with these masses.) Equation
(11) is a locally 1-1 relation between g, and g, and
thus we can meaningfully talk about letting Z(p) — 0
by letting g — oo (as it will, by the previous section,
uniformly on compact sets). Then g, is given by

i J*eo p2 dp }——1
477{ o Ex(p)o(PIEx(P) — o(p) — MT’

(13)
so that we can vary the renormalized mass of the
composite provided we also vary the renormalized
coupling constant by Eq. (13). We notice that the
connection expressed by Eq. (13) is locally 1-1, as is
required for a correct particle interpretation. This
condition fails for the photon in quantum electro-
dynamics® and is responsible for the failure of attempts
to describe quantum electrodynamics as a composite
theory.?

We see that the dressed 1-particle V state, given by
Eq. (6), remains well defined. The first term in curly
brackets tends to zero, but the second does not
because Z}g remains finite. Similarly, the totally
renormalized V field, Eq. (8), remains well defined
and just as non-point-coupled as ever.

Thus we see that although we could perfectly have
defined the composite V" field by the local choice

(&) =

Wleal(x) = N(x)0(x), (14)

we immediately obtain a nonlocality when the mass
renormalization is performed. This is characteristic-
ally field-theoretic effect; the V is off its mass shell in
N-0 scattering by an amount given by Eq. (7).

It is generally considered that the deuteron cannot
be a composite in the sense of field theory because it
has internal structure. On the other hand, it is known1®
that the success of the effective-range approximation
can be explained in terms of Z = 0 theory. We see
that there is nothing contradictory about all this; the
internal structure is reintroduced by the renormaliza-
tion of the local composite field.

We can perform a Green’s function analysis of the
local composite field W' according to the methods
given in detail in Ref. 6. The vertex-function equation
will be a Bethe-Salpeter equation involving mass-
renormalized Green’s functions of W'l and we see
at once that these will be precisely the Green’s func-
tions of W (which will of course need no mass renor-
malization). In this sense, the totally renormalized
field is forced on us by the renormalization program.

Unfortunately we cannot make any interesting

® M. M. Broido, Phys. Rev. 157, 1444 (1967).
1% S. Weinberg, Phys. Rev. 137, B672 (1965).
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assertion of this sort about charge renormalization,
because the renormalization of the VNO vertex is
entirely due to bubbles, i.e., to what are generally
called mass-renormalization effects. Thus a detailed
discussion of charge-renormalization effects and
locality will have to await the introduction of models
in which the charge renormalization is less trivial
(from a graphical point of view).

5. IS THE COMPOSITE MODEL EQUIVALENT
TO A MODEL WITHOUT A V?
We wish to investigate the possibility of the comp-
lete equivalence of the Lee model with composite V/
and a model with Hamiltonian

K=K, + K;,
Ky = f Ex(DN*(D)N(p) dp + f w(p)a*(P)a(p) dp.
(1)
K= f Z*IN*(p ~ K)h(p, K)h(p, k)
x N(p — kK)a(k') dk dk’ dp. (16)

By complete equivalence we mean, of course,
equivalence of the entire Hilbert-space formalism and
not merely of the S matrices. The latter is already
guaranteed by the work of Ref. 6 (at least for the
point limit).

We will see that the appearance of the function
h(p, k) in (16) is quite a general necessary condition
for the equivalence. Namely, whatever the exact
form of the interaction Hamiltonian X, the require-
ment that the dressed one-particle V' state, given in
terms of N and 6 by the composite limit of Eq. (6),
i.e., by

V(p)a = { lim Z%g} f dkD(p, IN*(p — K)a* (o,

(17)

should be an eigenstate of K with eigenvalue Ey(p),
reads

K |V(p)a

- { lim Zég} f [EL(p) — Ex(p — K) — (k)]

g w

x O(p, IN*(p, K)a* (k)), dk

- { lim zég} f (B, KON *(p — K)a* (k) dk.  (18)

g

This equation shows already why we must have A(p, k)
in K as given by Eq. (16). Then use of (16) yields

K [V(p)g= —X f O(p, N*(p — K)a*(k)), dk, (19)
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where

Q(p, k) = h(p, k) f h(p, K)(p, k) dk’.  (20)

Clearly the expressions (18) and (19) cannot be
equal unless the integral in (20) is a constant. Since
it is not, the equivalence is impossible. This was what
we set out to prove.

A less restrictive form of equivalence would be to
require only that the rest state of the composite should
have energy eigenvalue M. Then the equality of (18)
and (19) has to hold only for p = 0. The integral in
(20) is precisely the mass-shift integral, so that we
obtain the condition

_ 8%
oM

A" =lim

g+

(21)

This condition was derived in Ref. 6 as a general
equivalence condition (for the two systems of Green’s
functions) in any Green’s function system. It also
arises in the nonlocal Hamiltonian model of Ref. 7
where the entire formal apparatus is equivalent to the
g — oo limit of a simple elementary model. Thus we
see that although the equivalence of the Hilbert-space
formalisms of elementary and composite models holds
only in quite special cases, the condition (21) on the
coupling constants is an extremely general condition.

6. MISCELLANEOUS REMARKS

Dispersion relations for the Lee model were written
down in Ref. 1. They are very similar to those of the
Zacharaisen model. We have pointed out that Z; — 0
does not occur in the composite limit of the Lee
model. This suggests that where it occurs in the
Zacharajsen model,!! it is due to the approximations
used (elastic unitarity and perturbation theory).

It has been asserted® that in the Lee model with two
composite ¥ particles, only one ¥ becomes composite
when both Z;; tend to zero. This happened because
the authors of Ref. 5 ignored the solution of their
equations corresponding to our condition (21). (At
the bottom of page 653 of their paper, let o, — 0,
g2 — 0, with g3/a, finite in the limit.) This point will
be discussed in detail in a forthcoming publication.?

Finally, it has been suggested!® that the condition
Zy=0 is a “necessary condition for composite
particles” arising in a purely kinematic fashion. This
is clearly not the case in the model we consider here,
Indeed, when we consider the criterion, Eq. (3) of

11 See, for instance, N. G. Deshpande and S. A. Bludman, Phys.
Rev. 143, 1239 (1966), and references quoted there.

12 M. M. Broido and J. G. Taylor, Phys. Rev. 161, 1301 (1967).

13 H. M. Fried and Y. S. Jin, Phys. Rev. Letters 17, 1152 (1966).
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Ref. 13, in the composite Lee model, we find Z~* = 0,
contradicting what we know to be the case (namely
Z = 0). We believe that this unfortunate conclusion
is due to these authors’ use of perturbation theory.
The failure of perturbation theory in composite mod-
els is hardly surprising when one considers that in all
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known soluble models, the composite limit corresponds
to g — o0.
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This paper uses the sample probability-space description to review, under general conditions, the
measurement process whereby an empirical expectation value is obtained for comparison either with
other values or with values calculated from a theory. The emphasis here is on some of the conditions
which must be satisfied by general sequences of single measurements, about which an observer may have
relatively little knowledge, in order that such sequences yield suitable expectation values. In particular,
sequences are considered for which the requirements that the single measurements of the sequence be
independent and made of the same physical quantity on ensembles of identically prepared systems are not
necessarily satisfied. The differences between sequences which satisfy these requirements and those which
do not are discussed in terms of the implications or meaning of the resultant expectation value as a point

of contact between theory and experiment,

I. INTRODUCTION

In science in general and particularly in quantum
mechanics, the basic method of making contact
between theory and experiment is by means of expecta-
tion values obtained from sequences of single measure-
ments. From a sequence of N single measurements in
quantum mechanics, the mean My of the N empirical
results is determined. As N goes to infinity, the
sequences of empirical means is supposed to converge
to a limit value which is equated to or compared with
an expectation value Tr pO obtained from theory.!

There are also some requirements or conditions of
acceptability which are usually imposed on a sequence
in order that it yield a limit empirical mean suitable
as a point of contact between theory and experiment.
The requirements are that each single measurement
in the sequence is made of the same physical quantity
on a system obtained from an ensemble prepared
under identical relevant conditions.? Also the single
measurements are usually required to be statistically
independent of one another.

* This work was performed under the auspices of the U.S.
Atomic Energy Commission.

1J. Von Neumann, Mathematical Foundations of Quantum
Mechanics, translated by R. T. Beyer (Princeton University Press,
Princeton, N.J., 1955), Chap. IV.

2 J. M. Jauch, Helv. Phys. Acta 37, 293 (1964).

Although these requirements are usually considered
to be satisfied for sequences of measurements in
quantum mechanics, it is possible to construct
examples which do not satisfy one or more of these
requirements. For example, consider two states, p
and p’, prepared by two apparatus, 4 and A’, each of
which separately satisfy the “same preparation con-
dition” requirement. Then one can consider a sequence
of single measurements made on an ensemble prepared
by using both apparatus, 4 and 4’, in some definite
proportion. Then the sequence does not satisfy the
“same preparation condition” requirement.

From this example it might appear that one does
not need to impose any requirements as conditions of
acceptability on sequences of single measurements.
However, it is quite clear that any arbitrary sequence
of single measurements is not acceptable. The question
then arises regarding what some minimum con-
ditions are which a sequence must satisfy in order to
yield a limit empirical mean suitable for comparing
with a theoretical calculation.

This paper is mainly concerned with this question.
In particular, we consider here the description
of sequences of single measurements which do not
satisfy the “independence,” ‘‘same physical quantity,”
and ‘‘same preparation condition” requirements.



514

Ref. 13, in the composite Lee model, we find Z~* = 0,
contradicting what we know to be the case (namely
Z = 0). We believe that this unfortunate conclusion
is due to these authors’ use of perturbation theory.
The failure of perturbation theory in composite mod-
els is hardly surprising when one considers that in all

JOURNAL OF MATHEMATICAL PHYSICS

MICHAEL BROIDO

known soluble models, the composite limit corresponds
to g — o0.
ACKNOWLEDGMENT
My thanks are due to Dr. J. G. Taylor for pointing
out to me the momentum-dependence of the wave-
function renormalization “‘constant” Z,(p).

VOLUME 9, NUMBER 4 APRIL 1968

Some Properties of the Contact between Theory and Experiment

PAuL A. BeniOFF*
Argonne National Laboratory, Argonne, llinois

(Received 21 June 1967)

This paper uses the sample probability-space description to review, under general conditions, the
measurement process whereby an empirical expectation value is obtained for comparison either with
other values or with values calculated from a theory. The emphasis here is on some of the conditions
which must be satisfied by general sequences of single measurements, about which an observer may have
relatively little knowledge, in order that such sequences yield suitable expectation values. In particular,
sequences are considered for which the requirements that the single measurements of the sequence be
independent and made of the same physical quantity on ensembles of identically prepared systems are not
necessarily satisfied. The differences between sequences which satisfy these requirements and those which
do not are discussed in terms of the implications or meaning of the resultant expectation value as a point

of contact between theory and experiment,

I. INTRODUCTION

In science in general and particularly in quantum
mechanics, the basic method of making contact
between theory and experiment is by means of expecta-
tion values obtained from sequences of single measure-
ments. From a sequence of N single measurements in
quantum mechanics, the mean My of the N empirical
results is determined. As N goes to infinity, the
sequences of empirical means is supposed to converge
to a limit value which is equated to or compared with
an expectation value Tr pO obtained from theory.!

There are also some requirements or conditions of
acceptability which are usually imposed on a sequence
in order that it yield a limit empirical mean suitable
as a point of contact between theory and experiment.
The requirements are that each single measurement
in the sequence is made of the same physical quantity
on a system obtained from an ensemble prepared
under identical relevant conditions.? Also the single
measurements are usually required to be statistically
independent of one another.

* This work was performed under the auspices of the U.S.
Atomic Energy Commission.

1J. Von Neumann, Mathematical Foundations of Quantum
Mechanics, translated by R. T. Beyer (Princeton University Press,
Princeton, N.J., 1955), Chap. IV.

2 J. M. Jauch, Helv. Phys. Acta 37, 293 (1964).

Although these requirements are usually considered
to be satisfied for sequences of measurements in
quantum mechanics, it is possible to construct
examples which do not satisfy one or more of these
requirements. For example, consider two states, p
and p’, prepared by two apparatus, 4 and A’, each of
which separately satisfy the “same preparation con-
dition” requirement. Then one can consider a sequence
of single measurements made on an ensemble prepared
by using both apparatus, 4 and 4’, in some definite
proportion. Then the sequence does not satisfy the
“same preparation condition” requirement.

From this example it might appear that one does
not need to impose any requirements as conditions of
acceptability on sequences of single measurements.
However, it is quite clear that any arbitrary sequence
of single measurements is not acceptable. The question
then arises regarding what some minimum con-
ditions are which a sequence must satisfy in order to
yield a limit empirical mean suitable for comparing
with a theoretical calculation.

This paper is mainly concerned with this question.
In particular, we consider here the description
of sequences of single measurements which do not
satisfy the “independence,” ‘‘same physical quantity,”
and ‘‘same preparation condition” requirements.
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Such a description applies to any sequences for which
an observer either does not or can not know that
these requirements hold.

As a framework for discussion of general sequences
of single measurements, probability theory is used.
The fact that there are noncommuting observables
in quantum mechanics is not immediately relevant
to this work because the concern is with the proper-
ties of a single sequence of single measurements,
not in comparing limit means obtained from different
sequences. The fact that many textbook discussions of
probability theory are limited mainly to independent,
identically distributed® sequences of single measure-
ments is not, as is well known,* an intrinsic limitation
of probability theory.

Some general aspects of a description of a sequence
of single measurements within a probability theory
framework are discussed. In particular, the minimum
ergodic conditions imposed by probability theory on
a sequence are considered. We are also interested in
the relationship between what an observer knows
about a sequence and the consequences or implica-
tions of the result obtained from the sequence. It will
be seen that for sequences for which the same physical
quantity and same relevant preparation condition
requirements are satisfied, the basic meaning or
implication of a comparison between theory and
experiment is stronger than it is for sequences for
which an observer cannot know that these require-
ments are satisfied. This can be seen from the fact
that, for the former type of sequence, the limit
expectation value found empirically also applies to
each single measurement of the sequence, whereas in
the latter type, the limit value can not be applied to
each single measurement.

A basic aspect of the use of probability theory as a
framework for describing sequences of single measure-
ments is that probability theory begins with or requires
the assignment of a probability measure to each event
generated by the sequence of single events. However,
this does notimply that one must have prior knowledge
of the values of the probabilities of the events of the
sequence. If this were so, then probability theory

¥ An independent, identically distributed sequence is one in
which there is no statistical correlation between the results of the
single measurements of the sequence and for which the probability
of occurrence of any single measurement result is independent of
the place in the sequence at which the result occurs. Such sequences
are slightly more general than those for which the single measure-
ments are independent and made of the same physical quantity on
an ensemble of systems which is prepared under the same relevant
conditions. This can be seen from the following sequence which
satisfies the former but not the latter requirements: (1) a flip of a
coin P (heads) = 3, (2) a proton passed through a Stern—Gerlach
apparatus P (spin up) = §, etc.

4 M. Loeve, Probability Theory (D. Van Nostrand Co., Inc.,
Princeton, N.J., 1965), 3rd ed.
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would be essentially useless. As has been pointed out,’
one can profitably discuss within this framework
sequences of measurements which are not actually
comtemplated or for which the experimental condi-
tions are essentially impossible to realize on earth.

At this point, it seems worthwhile to review very
briefly some of the reasons discussed elsewhere® why
one must consider sequences of single measurements
for which an observer cannot know that the same
observable and same relevant preparation condition
requirements are satisfied. The reason for presenting a
review is that if it is possible for an observer to
arrange all sequences of physical measurements such
that he knows that these requirements are satisfied,
then the extensions reviewed here would be of aca-
demic interest only so far as physics is concerned.

One consequence of a description of the measure-
ment process, which includes these requirements, is that
an observer must always know how to construct a
sequence of single measurements which satisfies these
requirements. That is, he must already know how to
decide empirically whether or not each single measure-
ment of a sequence is made of the same physical
quantity on systems prepared under the same relevant
conditions.

Now according to quantum mechanics, such empiri-
cal information can only be obtained as expectation
values from other sequences of single measurements
made of the same observables on ensembles prepared
under the same relevant conditions. But then, in order
to know that these requirements are satisfied means
that still other sequences which satisfy these require-
ments have to have been done, etc. Thus one sees
that the description of the measurements of an
expectation value, as given in quantum mechanics,
leads to an infinite regression in that any sequence of
single measurements, which is to yield an expectation
value, always implies previous sequences of single
measurements by which one knows that the require-
ments are satisfied. Such a description does not allow
one to start the process of acquiring empirical
knowledge. The reason is that for sequences made at
the start of this process, an observer cannot know
what the relevant conditions are for identical prepara-
tion or how to ensure that a measurement apparatus
measures the same observable for each single meas-
urement of a sequence.

Furthermore, these arguments indicate that this
inadequacy of the quantum-mechanical description

5 W. Feller, An Introduction to Probability Theory and Its Applica-
tions (John Wiley & Sons, Inc., New York, 1965), 2nd ed., Vol. 1,
Introduction and Chap. I.

8 P. A. Benioff (unpublished).
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of the measurement process is especially pronounced
for the very fundamental measurements made at the
start of the process of acquiring empirical knowledge.
Consider, for example, the basic property of all
sequences of single measurements in that each single
measurement must occupy a different space-time
region. This means that before one can know that an
ensemble of systems is prepared under identical
conditions, he must know that the necessarily different
space-time labels associated with each preparation
are irrelevant variables. How does one describe the
sequence of single measurements by which this funda-
mental knowledge is acquired ? Similar questions can
be asked with respect to how one describes the
sequences of single measurements by which the validity
of an invariance principle for space-time transforma-
tions is empirically decided.®?

From this brief review, it appears that one must
consider more general types of sequences of single
measurements than are considered in quantum me-
chanics. Since probability theory can handle quite
general types of sequences, it seems worthwhile to
give a review of the probability-theory description of
general sequences, as such material does not seem to
be easily available. Such a review can also yield clues
regarding the basic properties of knowledge acquisition
which will be discussed in future work.

Finally, this review is restricted to those single
measurements which have an arbitrarily large but
finite number of outcomes. This is not an essential
simplification and is used because all single measure-
ments actually made havea finite number of observable
outcomes. For the same reason it is assumed that
the numbers x,, x,, * - -, x,, which have 'already been
assigned to the outcomes of each single measurement
are all finite. Again this is not an essential simplifica-
tion. We shall in this review essentially follow Loeve.

II. REVIEW
A. Sample-Space Description

In probability theory, any measurement can be
associated with an induced probability space (£, 4, P)
where Q is the space of all possible outcomes of
the measurement, 4 is the Boolean ¢ algebra of ail
measurable subsets of €, and P is a probability
measure defined on 4.%9 In our case, the certain event
€ in the space for each single measurement is
[x:, -, x,], 4 consists of all subsets of Q, and, for
any event £in A, PE is the probability of occurrence of
that event.

" E. P. Wigner, Nuoveo Cimento 3, 517 (1963); R. F. Houtappel,
H. Van Dam, and E. P. Wigner, Rev. Mod. Phys. 37, 595 (1965);
H. Ekstein, Phys. Rev. 153, 1397 (1967).

8 Reference 4, Chap. 111, pp. 362, 363.
® Reference 5, Chaps. 1, V, and VIII.
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Similarly, a sequence of N single measurements is
described by a Cartesian product of the N measurable
spaces (£2;, 4;) associated with the jth single measure-
ment withj = 1,2, - -+, ¥, and a probability measure
defined on the product space. An infinite sequence of
single measurements is then described by the proba-
bility space (£, 4, P), where Q = (II2, Q), 4 =
(I1;2, 4,), and P is a probability measure on A. This
infinite-product space is often referred to as the sample
probability space®® or the phase space of an experi-
ment.*® In this space the points of 2, (x,, x5, ),
describe the possible trajectories of a whole experiment
or equivalently give the possible infinite sequences of
outcomes. The events E,;, « =1,2,---,n; j=1,
2, - -+, as measurable subsets of 4, denote the events
“outcome x, occurred on the jth single measurement.”
These events are explicitly given in (2, A) as
Ey=Q; X QX xQ_; % [x,)

X Qyx-o (1)

An equivalent way to generate the sample space is
to consider the set of events E,;, a = 1,-+-,n; j=
1,2, -+ as the generators of a Boolean ¢ algebra A
of events on a space .!' This is done by taking all
countable intersections, unions, and co:mplements
among the E,;. The E,; are defined relative to the
empty set © and the certain event Q by Q = UJ2_, E,;
for each j (this says that each single measurement will
yield some outcome) and @ = E,; N E;; for any j
and o # B (this says that two outcomes cannot occur
simultaneously in any single measurement). The points
of Q are obtained from the infinite intersections of the
E,; for different j and correspond to the possible
infinite sequences of outcomes. Again ({1, 4, P) is
the sample probability space with P defined on A.

The random variable X; (as an element of a space
of measurable functions from Q to Borel sets of the
real line) which represents the jth single measurement
is given by (j=1,2,--°)

n
X; =2 xIE,, (2

a=1
where /£,;, the indicator random variable for the
event £,;, has the value I for all points w € E,; and is
equal to O otherwise. The random variable Xy
representing the mean of the first N single measure-

ments is defined as
. { A
Xy=7 Z X;. 3)
N iz
One can also define on the event algebra 4 a
10 U. Uhlhorn, Rendiconto Scuola Internazionale Fisica Enrico
Fermi, Varenna, Italy, 1960; Course 14: Ergodic Theory (Academic

Press Inc., New York, 1962), pp. 195-206.
1 Reference 4, Sec. 26.
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measurable set transformation T by the relation
E, 1= TE,; 4
foralla=1,---,nandj=1,2,---. Also for any
event E = E,; N Eg N -+ N E,_ one has
TE = Ea,:i+1 N Eﬁ,k+1 NN Ee,n+1 . (5)

If desired, T can be considered as a time translation
by one unit and as such depends on the interval
j+1—j and not on j+ 1 and j separately. One
also has
E ;o= TE,, (6)
with p =0, 1,--- and T° = 1. Also for any event E,
consisting of arbitrary intersections and unions of
different E,;, T*E shifts each index j to j + p.
This transformation also induces a transformation
T’ on the space of random variables given by

TIE,; =ITE,; = IE, ; @)
foralljande = 1,---,n. Thusonehasforp =0,1,---
X =(T)X;, (®)

and Eq. (2) becomes

v 1 y AV B ’
Xy=—2(TY X, =TiXy, &)
N j=1
where the transformation T is defined by
- 1 X .
Ty=— 2(Ty~ (10)
N iz

It is worthwhile at this point to discuss some aspects
of what has been presented so far. First of all, the
events E,; and the random variables X; were first
introduced and then the transformations T and 7’
were defined on the given events and random variables.
However, as Loeve has noted,!> one can use the
transformations to define the sequence of single
measurements, given the first one. Thus, if E, for
1 < a < nis the event “outcome « occurred on the
first measurement,” the event which corresponds to
the same outcome of the jth single measurement as
occurred in the first single measurement is defined as
T'E,;. Similarly, the random variable -X; repre-
senting the jth single measurement, which is a “repeti-
tion” of the first single measurement, is defined by
(T'y1x,.

Also, it is quite important to note that the set
transformation T is neither invertible nor necessarily
measure preserving. The noninvertibility of T can be
seen from the fact that the inverse of T, if defined,'®

12 Reference 4, Secs. 30, 31.

13 By the inverse of T is meant the actual inverse of T also defined
as a set transformation, not a point transformation 7-! corre-
sponding to 7. This use (Ref. 12) of T rather than T! to denote
a set transformation is different from popular usage.
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when applied to any event E,; would give E,; ;.
However, this inverse when applied to the events
E,, for any « is not defined as the E,,, for ] < a < n
describe the first events which can occur. As a result
T has no inverse. This lack of an inverse corresponds
to the description of a sequence of single measurements
as having a beginning but no end. If one prefers to
think of the sequence of single measurements as a
sampling of a hypothetical doubly infinite sequence
extending both into the infinite past and future, then
the probability-theory description given above can be
easily changed to describe this situation. In this case
T has an inverse, since the index j labeling any event
E,; now can have negative and zero values instead of
positive values only. In this case the 77 for p =0,
I,:+- form a group of transformations rather than
a semigroup.

In our opinion the fact that a sequence of single
measurements has a beginning (but no end) is im-
portant. In particular, the fact that an observer can
always add on more single measurements after an
arbitrary finite sequence has been completed but that
he cannot add on any before the first one, is an
important aspect of the knowledge-acquisition process.
That is, this process has a beginning. For this reason
the description given above in which 7 does not have
an inverse is to be preferred.

The not necessarily measure-preserving property of
T means that for any event E in A the probability of
the event TE need not equal that of the event E. That is

(11)
must be allowed for. This possibility arises because we
specifically want to include sequences of single
measurements which are not identically distributed.
As was noted earlier, sequences of single measure-
ments made on the same system or made on an
ensemble of identically prepared systems which are
described by measure-preserving transformations are
special cases of the more general description reviewed
here. It should also be noted that we do ror require
that the single measurements be statistically inde-
pendent.

The expectation value of the mean of the first N
single measurements is obtained from Egs. (2) and
(3) as

PTE # PE

(12)

where (IE,;) = PE,;. Using Eq. (4) this result can
also be written as

- LA .
<XN> =Zxa_ zPEaJ"
a=1 Nj=1

<)?N> = ElxaPNEal > (13)
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where the probability measure Py is defined in terms.of
P by13

N
PyE = 1 SPTE (14)
N =1
for every E in A.
Also the limit probability measure P, if it exists, is
defined by
FE = llm P]VE
N—-w

(15)

for every event E in A. If this limit probability exists,
then the limiting expectation of the random variable
Xy is given from Egs. (2) and (9) as
n
lim (T3 X,) = x,PE, . (16)
N-w a=1
The basic conditions which must be satisfied if a
sequence of single measurements is to yield a number
which can serve as a point of contact between theory
and experiment is that the associated sequence of
empirical means under consideration converge to a
limit which can be uniquely represented as an expecta-
tion value. These conditions are equivalent to the
requirements that the sequence of single measurements
be ergodic, or that the sequence of random variables
Xy N =1, satisfy an ergodic theorem and the
ergodic hypothesis. In our case an appropriate ergodic
theorem states that if a limit probability measure P
exists on A4 then, as N — o0, the random-variable
sequence converges almost surely. That is, if Eq. (15)
holds for every E in 4, then from Egs. (2), (9)*

as. lim Xy =T'X, = E'X,,

N-ow

(n

where ETX, is defined as the conditional expectation
of Xy, given the sub o algebra I' of invariant events.
(An event C €I is invariant if 7C = C.) By almost
sure convergence of Xy to ETX; is meant that
Xy(w) — ET X, in the Cauchy sense for every point @
of Q except possibly on a subset M of Q for which
PM = 0. (One also has PM = 0 because T must be
a null-preserving transformation.'?)

Ergodic theorems, which, in our case, are entirely
equivalent to Eq. (17), are the mean ergodic theorems*4
which say that for r > 1, if a limit probability P
exists on A4, then!s

tim [ L T4 X () — T’Xl(w)l’dP(co)]l/r —0. (18)

N—~o
In particular for r =2, Eq. (18) is equivalent to

1 Convergence in rth mean and almost sure convergence are
equivalent in our case because the random variables discussed here
are all bounded; see Ref. 12.
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mean-square convergence of the sequence of empirical
means. For the special case of T being invertible and
measure-preserving, Eqgs. (17) and (18) are Birkhoff’s
individual ergodic theorem'® and Von Neumann’s
mean ergodic theorem (r = 2),'® respectively.

The desired result has not yet been achieved be-
cause T'X; = ETX, still néed not represent, almost
surely, a single numerical result. In fact, if I' is
generated by a countable partition [C] of the sure
event Q, then from Eq. (2), EXX; is defined up to a
P equivalence by'"-1®

n
E'X, =3 x, g PLELIC, (19)

a=1
where IC is the indicator random variable for the
invariant event C and P_E,, is the limit conditional
probability for the event E_; given that the event C has
occurred. The statement “up to a P equivalence”
refers to the fact that P.E,, is undefined for any event
C for which PC = 0.

The ergodic limit of Eq. (19) shows the problem
more clearly in that the limit of the empirical mean
sequences may be equal to any one of the values
>, x, P E, for different C and in general one may
not know which C of the partition to choose. This
would be the case if the structure of the partition [C]
or which points w of Q belong to which C were not
known. An equivalent statement is that the space Q2
is almost surely decomposable into invariant sub-
spaces C and that the infinite sequence. of single
measurements almost surely occupies only one of the
subspaces C. In particular, this means that if the
infinite sequence were repeated, then there is a nonzero
probability P that a different limit value would be
obtained. This can be easily seen from Eq. (17) by
recalling that a given infinite sequence represents a
particular infinite sequence of outcomes and hence
a specific point of Q. If w labels the first infinite
sequence and o’ the repetition of the sequence, then
by Eq. (17) the limit values obtained for the first and
second sequences would be given by 3, x, P E,, and
X Pc,Eye, where w € Cpand o' € G,.

To avoid these difficulties, the requirement that the
sequence of single measurements is metrically transi-
tive is imposed. This is equivalent to the requirements
that the transformation T be P indecomposable or
that the only invariant events in I" are almost surely
@ and Q.'2 In this case £TX, = T'X, reduces to an
invariant degenerate random variable whose value is

15 G. D. Birkhoff, Proc. Natl. Acad. Sci. 17, 656 (1931).
1 J. Von Neumann, Proc. Natl. Acad. Sci. 18, 70, 263 (1932).
17 Reference 4, Sec. 24.

18 Eq. (19) can also be extended to include noncountable paritions
of ); see Ref. 12.
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given by

n
T'X,=>x,PE,. (20)
a=1
A degenerate random variable X is one whose value
on Q is almost surely a constant equal to (X).

B. Discussion

With this we come to the desired result that a
sequence of single measurements yields, in the limit,
a number which corresponds to a unique expectation
value. However, there are many other interesting
aspects of this process which are worth considering
at this point.

1. Invariance Properties of P and T’

First of all, the invariance properties of P and T’
under T and T, respectively, should be noted. In
fact it is easy to see from the definitions of P and T”
that for any event E, PTE = PE and PC = PC for
any invariant event C.2 Also the ergodic limit
operator T’ is invariant under T’ or commutes with
T’ so that T'T'X = T'T'X = T'X. This can be seen
from the facts that 7'X is a sum over invariant events
[Eq. (19)] and that P is an invariant measure. The
invariance of P and T’ occurs because 7 satisfies the
semigroup or group multiplication property. That is,
the translation T, from events of the jth single
measurement to events of the (j + n)th single measure-
ment is equal to 7" for m = 0,1,2,---.

These properties of 2 and T’ mean that the limit
expectation values obtained from an infinite sequence
of single measurements are independent of where the
sequence is started. That is, the fact that PE,; = PE,
and 7'X; = T'X,, for any j, means that one could
discard an arbitrary initial segment of the sequence
without affecting the limit results or, equivalently,
the sequence could be started with the jth single
measurement as well as the first without affecting the
limit results. If T refers to a time translation by one
unit, then this invariance means that the expectation
values are independent of what time ¢; the sequence
begins.

2. Comparison between Theory and Experiment

The previous discussion has shown that the descrip-
tion of the limit experiment, which consists of the
determination of the mean of an infinite ergodic
sequence of single measurements, is described by an

invariant degenerate random variable 7"X, where
T'X, =(T'Xy, @21

almost surely. The result obtained from this experi-
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ment is an expectation value given uniquely by Eq.
(21) or (16) and as such can be compared directly
with a theoretical number. This suggests an alternate
definition of the conditions under which the result of
an experiment is suitable for comparison with theory.
Namely, that any experiment, whether it consists of a
finite or infinite number of single measurements, which
can be described by an invariant degenerate random
variable, gives a result which can be directly compared
with theory.’® For any such experiment, even if it
consists of one single measurement, gives almost
surely a single unique result which is invariant under
repetition and any repeated sequence of experiments
described by invariant degenerate random variables
is trivially ergodic. However, for essentially all
measurements made in physics, the random variables
X;,j=1,2, - describing each single measurement
of a sequence are neither invariant (X;,; # X;) nor
degenerate [Eq. (2)]. In this case, any experiment
which is described by invariant degenerate random
variables is generated only by an infinite ergodic
sequence of single measurements.

As is the case for the X;, the random variables
describing the means of the first N single measure-
ments Xy [Egs. (3) or (9)] for any finite N are also
neither invariant nor degenerate. Thus the empirical
mean M, obtained from N single measurements
can not strictly be compared with theory. The lack of
invariance of Xy under 7’ means that M, is not
invariant under a change in the starting point of the
sequence of N single measurements. Also, the lack of
degeneracy of X means that M can be any one of
many possible values taken on by X, and conse-
quently M, is neither the almost surely unique
expectation value, (T'X,) nor (Xy) [Eq. (13)].

On the other hand, it is well known that one
acquires knowledge by making comparisons between
means of a finite number of single measurements and
theoretical expectation values. Of course, such a
comparison involves an approximation which states
how “‘close” the empirical mean, which is one of the
values of Xy is to the limit expectation value. The
well-known point2® we wish to stress again® is that all
such approximation statements relate an empirical
result to a calculated expectation value and as such
are also strictly valid only in the limit of an infinite

1% This definition includes some.trivial types of single-measure-
ment sequences such as a sequence of flips of a two-headed coin,
etc., for which each single measurement is described by an invariant
degenerate random variable. However, for all these cases the result
of each single measurement is known in advance and thus need not
be considered at all. As a result, this type of measurement will not
be considered further.

20 A. Papoulis, Probability, Random Variables and Stochastic
Processes (McGraw-Hill Book Co., New York, 1965), Chap. 8.
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ergodic sequence. In fact, such statements can be
easily constructed using the tools given in the last
section by considering an infinite sequence of repeti-
tions of a sequence of N single measurements.

3. The L (Q, A, P) Space of Random Variables

In the discussion given so far, we have concentrated
on the properties of a sequence of random variables
[X,] generated from one random variable X, [Egs.
(2), (3), and (8)]. However, the discussion can easily be
extended to cover properties of all L,(£2, 4, P) spaces
containing all bounded random variables defined on
the sample probability space (Q, 4, P). Since in actual
measurements the numbers associated with the out-
comes of each single measurement are always finite,
we restrict them to the space L, (L, 4, P) of almost
surely bounded random variables.?!

If one now considers sequences of random variables
generated by repeated applications of T to any random
variable in L, [Egs. (I)-(15)], then one has the same
ergodic theorems as before but applying to every
random variable in L .'? That is, if the limit measure
PE, defined by Eq. (15), exists for every event E in 4,
then the ergodic theorems Egs. (17) and (18) hold for
every random variable in L, . Equation (17) becomes

as. limTyX =T'X =E'X (22)

N-w
for every X in L, . Furthermore, if the sequence of
single measurements is metrically transitive, or the
ergodic hypothesis holds, then every random variable
T’X is both invariant under 7’ and degenerate with its
value given almost surely by (X}, where (X) is taken
with respect to the limit measure 7.

The main reason for this change of emphasis from
one random variable to every random variable in
L,(Q, A4, P) is as follows: If the ergodic conditions
are met, i.e., if the limit measure P exists and P is T
indecomposable,’® then the one sequence of single
measurements, which generates the sample space (€,
A4, P), is sufficient to yield empirical determinations of
the expectation values of every random variable in
L (€, 4, P). For example, from the ene sequence,
an observer can empirically determine the value of
PE for every E in 4 merely by setting X = JE. This
holds also no matter how complex E is [Eq. (5)] or
how much dependence there is among the different
single measurements of the sequence.

This fact is, of course, well known in quantum
mechanics for sequences of independent single meas-
urements made of the same observable on an en-

21 Reference 4, Sec. 9.4: The results obtained here are essentially
the same for any L, space with r > I;see Ref. 12,
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semble of identically prepared systems. In this case,
if the observable O = 3 O,P, is being measured, it
is clear that, besides empirically determining (O) from
the one sequence, the expectation values of each
observable in the algebra generated by the set of
projection operators [P,] are determined. Of course,
this requires that the observer know the actual result
sequence (which corresponds to a point @ in £2)
associated with the sequence of single measurements.

4. The Ergodic Properties

The previous discussion has shown us that the
requirement, that an infinite sequence be ergodic,
must be satisfied in order that the result obtained can
be compared with any theoretical expectation value.
It is worthwhile to stress at this point how really basic
this requirement is to the process of knowledge
acquisition. In particular, if the sequence does not
satisfy an ergodic theorem, then none of the associated
sequences of empirical means will converge. Such a
sequence of single measurements, if carried out, will
not give new knowledge as it does not yield any
result which can be compared with other results or
with theory. These points can be seen by consideration
of an example of an attempted probability measure-
ment by a sequence of single measurements which
does not satisfy an ergodic theorem.

In this example there are only two outcomes 0 and
i for each single measurement and the random
variable for the outcome 1 for the jth single measure-
ment is given by X, = £, in Eq. (2). Now suppose
the sequence of single measurements is such that the
probability of events E,; is given by PE,; = K for
L j<2, n=0,1,2,---and K = § for n even
and K = § for n odd. For such a sequence, the average
probability for outcome 1 for the first ¥ measurements,
PyEy [Egs. (4), (13), and (14)] oscillates between
values of $ and % as N is increased. As a result the
limit measure P of Eq. 15 does not exist and ergodic
theorems of Eq. (17) or (18) are not satisfied. It is
also clear that the empirical mean My, obtained from
the first N single measurements, is meaningless even
as an approximate measure of PE|; as the latter does
not exist.

However, it must also be kept in mind that a
segment of N single measurements can be part of
many different infinite sequences of single measure-
ments, some of which may be ergodic. Thus while
M is useless as a measurement of P in the sequence
described, it may be useful as a measurement of
P\E,, in another sequence which consists of an
infinite repetition of the first N single measurements.
In particular, if, in the new sample probability space
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of this new sequence, the measurements are inde-
pendent of one another and the transformation T on
the new space is measure preserving, then this new
sequence is ergodic!? and does give knowledge of the
values of PyEy; .

Another way to stress the really basic aspect of the
ergodic theorem requirement is to note that if a
sequence of single measurements did not satisfy an
ergodic theorem, it would not be a measurement or
even an observation. Consider, for example, the
formation of an image of an object on a grid of
photosensitive detectors behind a lens (the eye of an
observer, for instance). In order to see or register
anything, a large number of photons must be scattered
off the object through the lens into the grid. Now an
image is formed only if the relative frequency of
firing of each detector in the grid converges to a limit
which is proportional to the intensity of the scattered
light. (For the eye, the observer would see the object.)
On the other hand, if the relative frequency of firing
of each detector did not approach a limit or satisfy an
ergodic theorem, then one would not have an image
but instead would have a meaningless jumble of light
flashes or detector firings.

It should be noted that this requirement does not
mean that the image cannot vary with time. Rather,
it means that the variation with time be sufficiently
slow with respect to the incident photon current. In
this case the sequence of grid firings, obtained during
a time in which the photon current has not changed
appreciably, can be considered as an initial segment of
another independent, identically distributed sequence
of infinite repetitions of the initial segment. In this
case the initial segment can be a good approximation
to the limit image.

The above discussion has shown the importance of
the ergodic theorem requirement on the sequence of
random variables describing a sequence of single
measurements. However, it is also important that the
ergodic hypothesis be satisfied. The discussion pre-
ceding Eq. (20) showed that a P-decomposable
sequence, rather than occurring in the entire space Q,
occurs, almost surely, in one of the invariant subspaces
C.

Now if one can tell from the outcome of the single
measurements in which invariant subspace the se-
quence lies, then either the probability P can be re-
placed by the conditional probability P, on the
original sample space, or a new sample space, in which
Cis the certain event and P is the probability measure,
is used to describe the sequence. In either case the
ergodic hypothesis is satisfied!? and the sequence of
measurements yields an expectation value which can be
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compared with theory.22 This procedure is equivalent
to discarding all but one of the terms in the C sum of
Eq. (19) and replacing IC by 1.

Unfortunately, the general situation may not be as
pleasant as this. Besides the possibility that an observer
may not know the invariant subspaces of €2, there is
a worse difficulty. This is that even if one knows some
of the invariant subspaces and that the sequence lies in
one of them, it may turn out that the invariant
subspace containing the sequence is even further P
decomposable into still smaller invariant subspaces.
This would be the situation if the probability measure
in the sample probability space is mostly unknown to
an observer. The reason for this is that the decom-
posability of a space is always considered relative to
the points of the certain event € outside the P-null
events. Thus, if one does not know which part of the
space £ is P null, one can not know whether or not
it is almost surely decomposable under 7.

Furthermore, any experiments by which one would
hope to determine whether or not the sequence was
metrically transitive, such as determining the P-null
structure of ({2, 4, P), are infinite sequences of single
measurements which give expectation values. Thus
the problem of knowing whether or not the original
sequence is metrically transitive is transferred to these
new sequences. Further attempts at answering the
problem merely transfer it to still other sequences,
giving an infinite regression but no solution.

A similar basic problem concerns how an observer
knows that a sequence of single measurements satisfies
an ergodic theorem. It is clear that he cannot directly
verify the convergence of the empirical mean sequence,
because he can at most obtain a finite number of
terms. As is well known, knowledge of an arbitrary
initial finite segment of an infinite sequence gives no
information about the convergence properties of the
sequence.

From this discussion, it would appear that the
problem of whether or not sequences of single meas-
urements satisfy an ergodic theorem and are metrically
transitive would be of central importance to the usual
application of probability theory to the measurement
process. Yet these problems are usually not discussed
in textbooks on probability and statistics. The basic

22 As a simple example, consider a sequence in which the first
single measurement consists of randomly selecting a coin out of a
box of nickels and dimes and flipping it. All succeeding single
measurements consist of repeated flips of the selected coin. For such
a sequence, the points w of the certain event () in the sample
probability space are the infinite sequences of the four outcomes,
nh, dh, nt, and dt where d = dime, h = heads, etc. For this case
is almost surely P and 7 decomposable into the invariant subspaces
Ca and Cy, where Cg and C, correspond to the respective selection
of a dime and a nickel in the first single measurement and measured

limit probability is Iscd or Pc,, , respectively.
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reason for this is that essentially all measurements in
science are assumed to fall into a special class in which
the single measurements in a sequence are statistically
independent and made of the same physical quantity
on either the same system or on an ensemble of
systems prepared under the same relevant conditions.?
A sequence of random variables describing a sequence
of single measurements, which satisfy these require-
ments, is an independent, identically distributed
sequence and as such automatically satisfies both an
ergodic theorem and the ergodic hypothesis.!? For
this case the convergence property is usually described
in terms of the weak or strong law of large numbers or
mean-square convergence and the ergodic hypothesis
in terms of the Borel zero-one law.*

In conclusion, it should be noted that there are
several papers which discuss ergodicity, especially in
connection with the measurement process in quantum
mechanics.!®? The basic difference between our dis-
cussion and that of these other papers is that these
other papers first assume a basic quantum dynamical
description of each system or of the measuring
apparatus. Then the ergodic aspects arise in the de-
scription of a sequence of measurements made on
one system or of macroscopic systems whose micro-
scopic properties are at best only partly known. Our
discussion is different in that no physical dynamical
description of the behavior of single systems is
postulated. The probability theory description of a
sequence of single measurements requires the existence
of a probability measure on the events in a sample
space. But it is irrelevant to the theory whether or not
these events are connected by any physical dynamics.

III. FURTHER ASPECTS OF THE CONTACT
BETWEEN THEORY AND EXPERIMENT

A. Empirical Determination of P and P

It is of interest to compare the consequences, with
respect to the theory-experiment contact point, of
the minimum ergodic requirements with those of the
stronger independence and identical distribution
requirements. It is to be expected that as the require-
ments on the sequences become more stringent, or
that the amount of prior knowledge an observer has
about the sequence increases, then the implication or
meaning of “‘comparison” or ‘“‘agreement” between
theory and experiment becomes stronger. Such is
indeed the case.

It is necessary to digress slightly at this point to
recall that with respect to events E, described in the

23 Reference 4, pp. 228-230; Ref. 5, Chaps. VIII, X.

24 A. Daneri, A. Loinger, and G. M. Prosperi, Nuovo Cimento
44B, 119 (1966); Nucl. Phys. 33, 297 (1962); G. Ludwig, Rendiconto
Scuola Internazionale Fisica Enrico Fermi, Verenna, Italy, 1960,

Course 14: Ergodic Theory (Academic Press Inc., New York, 1962),
pp. 57-132.
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sample space (2, 4, P), PE and PE are probabilities
associated respectively with one measurement de-
scribed by E and with a limit average over an infinite
ensemble of such unit measurements [Eqs. (14) and
(15)]. Now if each single measurement of a sequence
is performed on a different system, then, for the
events E,; (for all « and j), P and P can be thought of
as the measures associated with single systems and
with infinitely large ensembles of systems, respectively.
Similarly, for events of the type E,; N Eg N -+ N
E.., P is the measure associated with a single
m-body correlation measurement on a single set of m
systems, whereas P is associated with an average of
successive m-body correlation measurements on an
infinite ensemble of systems. Thus P is associated with
a single measurement on a single finite set of one or
more single systems, whereas P is always associated
with an infinite ensemble of systems.

Now let us first consider the consequences of the
ergodic requirements. From the discussion given
earlier, it was seen that the limit means obtained from
an infinite sequence of single measurements are
associated with the measure P. This means that for
any sequence of single measurements which are known
to satisfy the ergodic requirements, the limit ensemble
probability measure P is directly observable or em-
pirically measurable. However, the measure P asso-
ciated with single measurements is not directly
observable or empirically measurable. That is, given
any event E, the sequence of single measurements
does not give one the value of PE. This can be seen
directly from the relation between P and P [Egs. (14)
and (15)] where for general non-measure-preserving
transformations there is no way to relate PE to PE,
since each term in the j sum of Eq. (14) can be
different.?

On the other hand, if one also knows for any
sequence that T is measure preserving or that the
sequence is stationary,'? then the terms in the j sum of
Eq. (14) are all equal. In this case, one has P = P,
which has the consequence that both the limit-
ensemble probability and the single-measurement
probabilities are directly empirically measurable.
That is, for any event E, the sequence gives one
empirical values of PE which can be set equal to PE.

From these considerations, one arrives at the
important point that the contact between theory and
experiment, or the meaning of agreement between
theory and experiment given by a stationary sequence

25 At present, it is not clear how much empirical knowledge of
the measure P can be obtained from general ergodic sequences.
Although P cannot be directly determined, it is clear that at least
some information about P can be obtained, other than that implied
by the ergodic requirements. It is hoped to study this point in future
work.
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is stronger or implies more than does the contact
given by a nonstationary ergodic sequence. This
occurs because whatever one learns from a comparison
of a limit empirical mean obtained from a stationary
sequence to a theoretical number applies both to the
limit ensemble and to each single measurement. How-
ever, whatever one learns from a similar comparison
made for a more general ergodic sequence applies
directly to the limit ensemble only.

Now, if each single measurement consists of a
preparation and measurement procedure and it is
known that the sequence of single measurements is
ergodic and stationary, then an observer can obtain
from the sequence empirical knowledge of the proba-
bilities associated with each single system. However,
this is usually not sufficient for physical measurements
because these single-system probabilities may not
represent an ensemble of independent or noninter-
acting systems. This is taken care of by the additional
requirement that the ensemble of single measure-
ments be statistically independent of one another.

In this case, then, for any sequence which is known
to be independent and stationary or identically
distributed,®? knowledge of the values of the limit
measure P also implies knowledge of the independent
or noninteracting single-system probabilities. In this
case, the implications or consequences of agreement
or comparison between theory and experiment are
quite strong compared to that for sequences which are
known only to be ergodic.

The cases discussed above represent rather extreme
cases of a large amount of knowledge, the independ-
ence and identical-distribution (or stationarity) re-
quirements and a small amount of knowledge (the
ergodic requirements only) which one may have about
a sequence. There are also many intermediate cases.
Consider, for example, a sequence which is known to
satisfy the ergodic requirements and which is also
known to be Markovian. In this case, the limit
probabilities PE,; for each « are obtained from the
transition matrix only?® and as such are independent
of the initial probabilities PE,;. Thus one sees that a
measurement of the values of PE,; gives no informa-
tion about the values of PE,;. On the other hand, it is
known that the values of PE,; converge exponentially
to PE,, as j — 00.26 Therefore, for Markov sequences
of single measurements, one sees that knowledge of
the values of PE,, also implies knowledge, to an accu-
racy ¢, of all but M(¢) values of PE,;forj=1,2,---,
where M(e) is an exponential function depending on
the convergence rate of the sequence.

These considerations of the effect that different

26 Reference 4, Sec. 27.
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amounts of prior knowledge about a sequence of
single measurements have on the consequences of the
empirical results, stress the importance of under-
standing the dynamics of the knowledge acquisition
process. They show an interesting feedback aspect in
that the more prior knowledge one has about a
sequence, the stronger the consequences are of the
empirical results. If one knows only that a sequence is
ergodic, then the empirical results imply less in that
they give complete knowledge of the limit measure
P and, at most, partial knowledge about the measure
P.%5 On the other hand, if one knows relatively more
about a sequence, i.e., that it-is independent and
identically distributed, then the same empirical results
imply more in that they give complete knowledge both
of the limit ensemble and single-system measures.

This feedback aspect means that one must be
careful about making arbitrary assumptions of prior
knowledge at the start of any measurement sequence.
It may well be that such assumptions have nontrivial
consequences for the measurement process, and pos-
sibly even for physics.® Thus it may be that if one
arbitrarily assumes that the preparation and measure-
ment procedures used to construct a single measure-
ment sequence give an independent identically
distributed sequence, then the empirical results
obtained from this and other sequences may not
contradict and might even support the assumption.
On the other hand, if one does not make this
assumption, then exactly the same empirical results,
which now are weaker in that they give at best only
partial knowledge of P, may say nothing about
whether the procedures used yield independent,
identically distributed sequences.

B. Connection with Quantum Mechanics

Here we shall only indicate very briefly how contact
might be made with quantum mechanics and leave
for future work a more detailed discussion. In the
previous discussion, it was seen that direct contact
between a physical theory and experiment is made by
means of limit empirical means obtained from infinite
sequences of single measurements. Furthermore, this
contact gives one direct knowledge of the measure
P. Since quantum mechanics is a physical theory which
provides expectation values for comparison with
experiment, it is natural to equate PE, to TrpP,.
That is, from Eq. (20) one writes for ergodic sequences

T'X =Y x,PE, = > x, TrpP, =Trp0, (23)
where the eigenvalue expansion of the observable O

is given by Y, x,P,. The subscript j has been left off
the event to indicate the independence of PE, from j.
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It is clear from this equation that TrpO represents
the infinite ensemble of single measurements or that
p represents an infinite ensemble of single systems.?’
This occurs because of the direct relation between
TrpP, and the limit ensemble measure P. Furthermore,
since the previous discussion has shown that one
cannot directly relate P to P for general ergodic
sequences,?® one cannot use TrpO as a description of
any single measurement of the sequences. Equiv-
alently, one cannot directly use p in this case to de-
scribe a single system.

On the other hand, any sequence for which it is
known that the single measurements are independent
and made of the same physical quantity on an ensemble
of identically prepared systems is a sequence for which
P = P. In this case, TrpO refers both to the infinite
ensemble of single measurements as well as to each
single measurement. In this case, it would seem that
p can indeed represent a single system.

These aspects may throw some light on the con-
troversy regarding whether a state in quantum me-
chanics represents an infinite ensemble of systems or
a single system.?” The preceding discussion suggests
that, if one can show that, starting from general
ergodic sequences, it is possible to acquire sufficient
knowledge of the physical world to enable him to
construct independent identically distributed se-
quences, then p can represent either a limit ensemble
or a single system. However, if such knowledge is not
rigorously attainable, then p can exactly represent an

%7 G.Ludwig,**Solved and Unsolved Problems of the Measurement
Process”, translated by E. Wilip from Werner Heisenberg and
Contemporary Physics, F. Bopp, Ed. (F. Vieweg and Sohn, Braun-
schweig, 1961), pp. 150~181; H. Ekstein, Ergeb. Exakt. Naturwiss.
37, 150 (1965); D. Bohm and J. Bubb, Rev. Mod. Phys. 38, 453
(1966).
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infinite ensemble only. The problem of whether such
knowledge is attainable or not is not trivial in quantum
mechanics as other work has shown.®

IV. CONCLUSION

In this work, we have seen, within a probability-
theory framework, that there are minimum ergodic
conditions which a sequence of single measurements
must satisfy to serve as a point of contact between a
physical theory and experiment. That is, the sequence
must satisfy an ergodic theorem and be metrically
transitive. Although these are much weaker conditions
than the usually assumed independence and identical
distribution, they indicate that, as is the case with
quantum mechanics,®?® probability theory does not
give a sufficiently complete framework for the descrip-
tion of the process of measurement or knowledge
acquisition. For one thing, the question is left open
of how an observer is to know that a sequence is
ergodic. This question is particularly relevant to the
description of the basic sequences of single measure-
ments by which one tests for the homogeneity of
space-time.

In spite of these difficulties, such a discussion, as
has been given here, can help to clarify the basic
problems of measurement. Also, it does suggest other
approaches to the understanding of the basic dynamics
of the knowledge acquisition process and how it can
be relevant to physics.
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The phonon propagator for an arbitrary crystal is the analytic continuation to the complex z plane of
the Fourier coefficient of the imaginary time correlation function Djir(k; u) = (TAki(u)A;;(0)), where Ay
is the field operator for phonons with wavevector k and polarization or branch index j. Considering
D(k; u) as a 3r X 3r matrix whose elements are labeled by j and j* (j,j =1, 2, - -+, 3r), where r is the
number of atoms in a primitive unit cell of the crystal, the restrictions imposed on the form of this matrix
by the symmetry and structure of the crystal are determined here. In particular, it is proved that the
element D;;-(k; u) vanishes unless j and j” label normal modes of vibration which transform according
to the same row of the same irreducible multiplier representation of the point group of the wavevector
k, Go(k). As a corollary to this result it follows that if no two modes labeled by the wavevector k exist
whose frequencies are different, but whose associated eigenvectors transform according to the same
irreducible multiplier representation of G,(k), the matrix Di;(k; «) is diagonal in j and ;.

In a recent paper! it was shown that the phonon
propagator D,;.(k; z) for an anharmonic crystal of the
rocksalt structure is diagonal in the phonon branch
indices j and j* when k = 0. This result was obtained
by showing that the proper self-energy matrix
P, (k; z) has the same property and invoking the
Dyson equation®

Dj}k;z) = 8;, DV 7k; z) — Pyy(k;z) (1)

which relates the matrices P(k; z) and D(k; z). In
this equation, D{®(k; z) is the free-phonon propagator,

dok) 1
i k) — z* ’

where w,(k) is the frequency of the normal mode of a
harmonic crystal described by the wavevector k and
the branch index j, and g = (kzT)1. In Egs. (1) and
(2) z is a complex variable.

That P,;(0; z) is diagonal in j and j° was proven
by a term-by-term examination of the perturbation
series for the proper self-energy. This; however, is a
rather unsatisfactory way of demonstrating what must
be a consequence of the symmetry and structure of the
crystal. In the present note we present a group theo-
retic analysis of the structure of the phonon propagator
D;,;(k; z) as a matrix in the indices j and j’ for an
arbitrary crystal, when the wavevector k refers to one
of the points of symmetry in the first Brillouin zone
of the crystal, i.e., when the point group of the wave-
vector k, Gy(k) contains more than the identity.

DP(k; z) = €3]

11. P. Ipatova, A. A. Maradudin, and R. F. Wallis, Fiz. Tverd.
Tela 8, 1064 (1966); [Sov. Phys.—Solid State 8, 850 (1966)].
2 A. A. Maradudin and A. E. Fein, Phys. Rev. 128, 2589 (1962).

Because the type of calculation we describe here is
somewhat similar to the determination of space group
selection rules for two-phonon infrared and Raman
processes, the methods employed here may be of use
in the context of the latter problem as well.

The phonon propagator D;;.(k; z) is the analytic
continuation to the complex z plane of the Fourier
coefficient?

8
D, (Kk; iw) = /—;f du e” "D (Kk; u),
0
w0, = 2nljfh, (3)
of the imaginary time correlation function
D (ks u) = (T (WA (0), —f <u <B. (4)

In Eq. (4) A,; is the phonon-field operator for the
normal mode of the harmonic crystal described by
the wavevector k and the branch index j. It is given in
terms of the phonon creation and destruction operators
by, and by; by

Ay; = by; + bhy; = A%, (3
The operator Ay ;(u) is defined by
Ay(u) = e 4,00, (6)

where H is the crystal Hamiltonian. The operator T
orders a product of u dependent operators from right
to left in the order of increasing arguments. Finally,
the angular brackets (- - -) denote an average carried
out with respect to the canonical ensemble describea
by the Hamiltonian H.

For our purposes it is convenient to rewrite the
correlation function D,.(k;wu) in a different form.
The relation between the displacement u(/x) of the
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«th atom in the /th unit cell of the crystal and the
operator A,; is given by

B ek KD a
2NMK) 2 w0t ¢

Here, o labels the Cartesian axes, N is the number of
unit cells in the crystal, and M, is the mass of the «th
kind of atom in a primitive unit cell. w;(k) is the
frequency of the normal mode of the harmonic
crystal which is described by the wavevector k, and
the phonon branch index j, which assumes the values
1,2,--+,3r, where r is the number of atoms in a
primitive unit cell of the crystal. e(x |Kkj) is the
associated unit polarization vector. The vector
x(/) is the position vector of the origin of the /th unit
cell in the crystal, and we will denote the position of
the xth ion in a primitive unit cell relative to the origin
in the unit cell by x(«). This origin must be chosen
in such a way that the position vector of the atom
(Ix) is given by x(/) + x(x) = x(/«). The allowed
values of k are determined by the cyclic boundary
condition, and they are uniformly distributed through-
out the first Brillouin zone of the crystal with a
density F/(2m)%, where V is the volume of the crystal.
The eigenvectors {e(x | kj)} and the frequencies
{w,;(k)} are related through the eigenvalue equation3

Zﬂ Caplrc’ | K)eg(x’ | kj) = wi(K)e,(ic | kj),  (8)

where C(k) is a 3r X 3r Hermitian matrix called the
Fourier-transformed dynamical matrix. The explicit
expression for the elements of C(k) will not be required
in what follows.
The eigenvectors {e(x | kj)} satisfy the orthonor-
mality and closure conditions*
3 e (| Ki)e; (¢ | ki) = 6,5,

K

S e [ kg (k' | kj) = Sy

)

Ay, (Ta)

() = (

ki

(9a)
(90)

The relation inverse to Eq. (7) is readily found to be

OV _

Ay = (2—(")) 3 (M ek (| ke u (1), (Tb)
ﬁN / lka

With this result the correlation function Dj;(k; u)

can be written equivalently as

D,(k; 1) = ﬁiN [0, 0SS S (M M)}

' ke’ aff
X e (i« | kjes(r’ | Kj'ye e x—xn
X (Tu(lc; wlug(I's’; 0)). (10)

3 See, for example, M. Born and K. Huang, Dynamical Theory of
Crystal Lattices (Oxford University Press, Oxford, 1954), p. 297.
Note that the matrix which we have denoted by C(k) is called D(k)
by these authors.

4 Reference 3, p. 298.
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To determine the structure of D,;.(k; z), regarded as
a 3r X 3r matrix in the branch indices j and j’, it
suffices to study the correlation function D, (k; u).
The operations of evaluating its Fourier coefficient
and continuing the result to the complex z plane
cannot alter this structure.

An operation of the space group G of the crystal
can be written in the Seitz? notation as {S | v(S) +
x(m)} and is defined by its effect on the position
vector X(/«),

{S | %(S) + x(m)yx(lx)

Sx(lx) + ¥(S) + x(m)
x(LK). (11)

The matrix Sisa 3 X 3 real, orthogonal matrix which
describes a proper or improper rotation. x(m) is a
lattice translation vector, and v(S) is a translation
through less than any primitive translation vector of
the crystal. Space groups for which v(S) is zero for
every rotation S are called symmorphic. The second
equality in Eq. (11) expresses the fact that because the
operation {S | v(S) + x(m)} is one which restores the
crystal to itself the lattice site (/x) must be taken into
an equivalent site which we label by (LK). Where a
more explicit notation is not required, we use the
convention of labeling by capital letters the site into
which a given site is transformed by the operation
{S]v(S) + x(m)}.

With each operation {S | ¥(S) + x(m)} we associate
a linear operator O({S | v(S) + x(m)}) which is
defined through its effect when applied to a scalar
function of x(/«x):

O(S|¥(S + x(m}f (x(Ix))
= f({S | ¥(S) + x(m)y'x(Ix)), (12a)
where we have explicitly that
{S|¥S) + x(m)} ™" = {S7 | =S7'w(S) — S7'x(m)).
(12b)

When the crystal is subjected to a symmetry opera-
tion {S|v(S)+ x(m)} which sends the lattice site
(/c) into the site (LK), the displacement vector
u(/«x) associated with this site is both rotated in the
same sense as the crystal and transferred to the site
(LK). Its law of transformation can therefore be
expressed in the form

oS | v(S) + x(mMHu(x(1)O™'({S ] v(S) + x(m)})
= Su({S | ¥(S) + x(m)}'x(Ix)),
or, in view of Eq. (11), as
O({S| ¥(S) + x(mHu(LKYOT'({S | ¥(S) + x(m)})
= Su(l«).

(13)

5 F. Seitz, Ann. Math. 37, 17 (1936).



PHONON PROPAGATOR OF AN ANHARMONIC CRYSTAL

Because the symmetry operation {S | v(S) + x(m)}
sends the crystal into itself, the crystal Hamiltonian
must be invariant under the application of the operator
O({S | v(S) + x(m)}), i.e.,

O({S | ¥(S) + x(mPHOT({S | ¥(S) + x(m)}) = H.
(14)
In fact, this result together with Eq. (13) enables one
to obtain the independent nonzero elements of the
force constant tensors which appear when the crystal
potential energy is expanded in powers of the atomic
displacements.

Combining Egs. (13) and (14) we obtain a useful

result starting from the identity

(ug(lic; wug(l'e’; 0))

= (u,(lrc; wuy(I'n’; 0)0({S | V(S) + x(m)})
x O({S] ¥(S) + x(m)}))

= (0({S | W(S) + x(m)}Du,(lx; u)
x 07({S| ¥(S) + x(m)})
x O({S| ¥(S) + x(m)Puy(I'«’; 0)
x 07Y{S | ¥(S)+ x(m)}))

=Y S,,85u,({S | ¥(S) + x(m)}x(Ix); u)

X u,({S | ¥(S) + x(m)} 'x(I'x"); 0)). (15)

The second equation is a consequence of the cyclic
invariance of the trace, while the third is a consequence
of the fact that according to Eq. (14), the operator
O({S | v(S) + x(m)}) commutes with the crystal
Hamiltonian. Using Eq. (11) we can write finally that

(LK 3 wug(L'K"; 0))
=3 SuuSgu (s wu (I'e’; 0)).  (16)

Before discussing the restrictions on the form of the
correlation function D, (k; u) imposed by the sym-
metry and structure of a given crystal, we establish
several general properties of this function which hold
for any crystal.

We note first, that because w;(k) and e,(« | ky) are
periodic functions of k, with the periodicity of the
reciprocal lattice,’

w;(k + 27b) = w,;(k),
e(k | k + 27bj) = e(x | kj),

(17a)
(17b)
where b is an arbitrary translation vector of the

reciprocal lattice, the correlation function D;;.(k; u)
also has the same periodicity in k,

D, (k + 27b; u) = D, (k; u). (18)
8 A. A. Maradudin, E. W. Montroll, and G. H. Weiss, Theory of

Lattice Dynamics in the Harmonic Approximation (Academic Press
Inc., New York, 1963), p. 77. See also Ref. 8 below.
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If we write D,;.(k; u) as

1 _ wlFe
D (k; u) = 6(u) —Z-z e P Emet En=En (m| Ay, |n)
mn
X (n| Ayy |m)
+ 0(_u)_1_z e-—ﬂEme-—u(Em-En)
Z mn

X (m| A_y; |n)n] Ay, [m), (19)

where 6(u) is the Heaviside unit step function, and
where E,, is the energy of the eigenstate |m) and Z is
the crystal partition function, the following two
results follow immediately if we recall Eq. (5):
D (—k; u) = Dy j(k; —u), (20
D} (k;u) = D, k; u). @n
If we now invoke time-reversal symmetry and time-
translation invariance, we obtain in addition that

D, (k; u) = (TAH(0) Ay (—u))
= (T A_y; (1) Ay (0))
= D, (—k;u). (22)
Combining Eqgs. (20)-(22) we see that in general
D,,(k; u) is an element of a Hermitian matrix and is
an even function of «, with the property that
D,;(—k; u) = Djy(k; u). (23)

In the special case that the point group of the
crystal contains the inversion, i.e., when the crystal
possesses a center of inversion, the matrix D,;(k; u)
is not just Hermitian, it is real and symmetric. To show
this, let us denote the inversion by I, and label the
site into which (/) is taken by the space-group
operation {I|v(/) + x(m)} by (/). Then with the
conventional choice of phases™®

e:(k l kj) = e‘“"["(EHX(K”ea(K l kj),
together with the relation
Ix()) = x(I) + x(&) — {L| v(I) + x(m)}x(x), (25)

which follows directly from Eq. (11), we obtain from
Eqgs. (10) and (16)

(24)

D, (k; u) = hiN (0,0, &)} S 53 (MaMz)}

1! k' aff
% ea(k | kj)e—ik-[x(E)+x(K)]
X e;(:?’] kjl)eik~[x(?)+x(l¢’)]
X eik-[x(l)+x(i)+x(~)—x(l')—x(?')—x(x')]
X (Tug(lie; wyuy(I'z’; 0)).
7 M. Lax, Phys. Rev. 138, A793 (1965).

8 A. A. Maradudin and S. H. Vosko, Rev. Mod. Phys. 40, 1
(1968).

(26)
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Replacing (/k) and (I’«’) by (I<) and (I'%’) as summa-
tion variables we have finally that

D,,(k;u) = D, (—k; u). 27)

Combining Eqs. (23) and (27) we see that D;.(k; u)
is real for crystals possessing a center of inversion.
From Eq. (21) it follows that D,;.(k; u) is symmetric
inj and j’ in this case. Finally, from Eq. (23) we find
that D,,;(k;u) is an even function of k for such
crystals (as well as being even in u).

We now turn to the determination of the restrictions
imposed on D;;.(k; u) by the symmetry and structure
of a given crystal.

When the result given by Eq. (16) is substituted into
Eq. (10) the latter becomes

D,(k; u) = (2/AN)(w (SK)w (Sk))}
X 333 T (MM ytel (x| kies(x’ | k')

11" k" af pv
X e—isk~[Sx(l)—Sx(l')]<Tuu(LK; M)MV(L’KI; 0)>
X S,u2Sup- (28)

In writing this result we have used the fact that
w;(k) considered as a function of k has the full point

symmetry of the crystal,?
0;(Sk) = w,(k). (29)

In addition, we have noted that because the symmetry
operation {S | v(S) + x(m)} takes an atom of type «
into an atom of type K, which must be the same kind

of atom as «, we must have that
M, = Mg. (30)

If now we use the result, which follows from Eq.
(11), and of which Eq. (25) is a special case, that

Sx() = x(L) + x(K) — {S| v(S) + x(m)}x(x), (31)

we obtain

D (k;u) = ;—N [wj(Sk)(uj,(Sk)]% g ZZ (MKMK’)%
|

x { 3 Sul'es | {8 [ (S) + x(m)eg(es| kj’)}

X e SEENTY (Lies wyu (1’5 0).

3 8%k | K: (S | ¥(S) + x(mPel (x| kj)}

Ky

(32)

In writing this result we have introduced the 3r x 3r
matrix S(k; {S | v(S) + x(m)}) whose elements are
given explicitly by
Sp(rc’ | k3 {S | V(S) + x(m)}) = S,40[k, Ko(x'; S)]

% eiSk-[x(x)—(SIv(S)+x(m))x(K’)]' (33)
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Moreover, we have made more explicit the fact that
K is the label of the atom into which the atom « is
carried by the space-group operation {S|v(S) +
x(m)} by writing

K = Ky(x; S). (34)

That only the rotation S is required to relate K to «
uniquely is a consequence of the fact that a pure
translation of the crystal leaves the basis label « of the
site (/x) unchanged, and of the fact that the translation
vector v(S) is uniquely specified once S is given.

It follows from Eq. (4.8) of Ref. 8 that as long as
the operation {S|v(S) + x(m)} is not one of the
operations of the space group of the wavevector k,
Gy, i.e., as long as

Sk # k — 27b(k; S), (35)

where b(k; S) is a translation vector of the reciprocal
lattice, then

{ S 8% (ks [ K (S| W(S) + x(m) et (s | kj)}

X { Zﬂ 8,5(x" ey | k3 {S | V(S) + x(m)Deg(x, | kj')}
= e} (x | Skj)e, (| SKj"). (36)

Combining Eqs. (32) and (36) we find that D;;(k; u)
has the point symmetry of the crystal,

D;(k;u) = D;;(Sk; u), Sk # k — 2nb(k;S). (37)

Equation (37) tells us that if we know the form of
D;;.(k; u) for a given value of k, we know it for all
values of the wavevector obtained by applying the
operations of the point group of the crystal (ie., of
the crystal class) to k. That is, we know D,;.(k; u) for
all other wavevectors in the star of k. It only remains
to determine the structure of D;;(k; u) at a given value
of k.

To achieve this we must do two things. The first is to
restrict the operations {S | v(S) + x(m)} of the space
group G of the crystal which appear in Eqs. (32) and
(33) to those which comprise the subgroup of G
called the space group of the wavevector k, G.
This latter group consists of all operations {R ] v(R) +
x(m)} of the space group G whose rotational elements
{R} have the property that they leave the vector k
invariant, modulo 27 times a translation vector of the

reciprocal lattice®:
Rk = k — 27b(k; R). (38)

This equation defines the reciprocal lattice vector

® To distinguish the rotational operations in the group Gy from
those of the full group G, we denote the former by {R} and continue
to denote the latter by {S}.
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b(k; R), which clearly is a function of both the given
wavevector k and of the particular rotation R which
we are considering. It should also be clear from the
property of the first Brillouin zone for a crystal that
no two points in it can differ by more than 2= times
a translation vector of the reciprocal lattice, that
b(k; R) can be nonzero only when k lies on the
boundary of the zone.!® Finally, we note that the
collection of rotational elements {R} itself forms a
group, which we call the point group of the wave-
vector k and denote by Gy(k).1° The order of this point
group, which is one of the 32 crystallographic point
groups, will be denoted by 4.

When the symmetry operations appearing in the
right-hand side of Eq. (32) are those of the group G,
this equation takes the form

Dy(k; w) = 2= [0, (01 3 3 3 (MM}

11 KK uy

Ki1a

x { S 8% (ke | k3 (R| WR) + X(m)De (x| kj)}

| 3 80 s R 3R + xOm Dyt | )
x e F IOy (I wu (I'’; 0)), (39)

where now

up(ici’| ki (R [ V(R) + x(m)}) = R,g3(k, Kefi'; R)
X eik-[x(K)—(R[v(R)+x('m))x(K’)]‘ (40)

The reason that the exponent on the right-hand side
of Eq. (40) is as simple as it is, is that

x(K') — {R | v(R) + x(m)}x(x")

is a translation vector of the crystal, as can be seen
directly from Eq. (31).

The set of 3r-dimensional matrices S(k; {R | v(R) +
x(m)}) can be shown to provide a representation of
the group G .%'! However, we will not exploit this
property of these matrices. Instead, we prefer to work
with a new set of 3r-dimensional matrices {T'(k; R)},
which is obtained from the 8(k; {R ] v(R) + x(m)}) by
the relation

T,,,(KK', k;R) = eik-(v(R)+x(m))l
X 8,(ex’ | K3 {R| ¥(R) + x(m)})
= Raﬂé(’c, Ky(x'; R))ez'k-[x(lc)—llx(x‘)]. (41)
The matrices {T(k; R)} stand in a one-to-one corre-

spondence with the elements of the point group
G,(k). However, they do not provide an ordinary

10 G. F. Koster, in Solid State Physics, F. Seitz and D. Turnbull,
Eds., (Academic Press Inc., New York, 1957), Vol. 5, p. 173; in
particular, see p. 223.

11 H. W. Streitwolf, Phys. Stat. Solidi 5, 383 (1964).
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representation of this group, but rather provide a
multiplier representation of it,>13 in the sense that the
multiplication rule for any two matrices T(k; R;) and
T(k; R,) is®

T(k; R)T(k; R,) = ¢(k; R, R)T(k; RR,), (42a)
#(k; R;, R)) = exp 2mib(k; R;") - ¥(R,). (42b)

We see from Eqs. (42) that the matrices {T(k; R)}
provide an ordinary representation of G,(k) for an
arbitrary crystal if k lies inside the first Brillouin zone,
because then b(k; R;") vanishes. The matrices
{T(k; R)} also provide an ordinary representation of
G,(k) for all wavevectors k inside or on the boundary
of the first Brillouin zone for a crystal with a sym-
morphic space group, because for such crystals
v(R,) vanishes for each operation R;.
Substituting Eq. (41) into Eq. (39) we obtain

D,y (k; u) = f]—v (0,00, k) S S 3 (MM}

11 K& py

x { 3 Tk, | k3 R)e (o | kj)}

Ko

X { zﬁ T, 5" i3 | K; R)eg(ks | kj’)}
x e OXONTY (e wyu,(I'e’; 0).  (43)

The second thing we must do to determine the
structure of D;;(k; u) is to generalize our notation
for labeling the branches of the phonon spectrum.
Up to now it has been sufficient to label them by a
single index j (= 1,2,--+,3r) and to assign the 3r
frequencies for a given k to these branches by a con-
vention such as w(k) < 2, (k). However, in order
to proceed further in our discussion, we must label
the branches of the phonon spectrum in a way that
displays explicitly the possible degeneracies of the
modes and their symmetry properties. Among the 3r
branches of the phonon spectrum corresponding to a
given value of k there may be several which are
degenerate. To take account of this possibility we
could replace j by a double index (¢1), where o
labels the distinct frequencies, while A differentiates
among the f, linearly independent -eigenvectors
e(x |kol) (A=1,2,---,f,) associated with the
frequency w,(k). Thus the normal mode labeled by
k and ¢ is assumed to be f,-fold degenerate.

The matrix T(k; R) can be shown® to commute with
the Fourier transformed dynamical matrix C(k) for
each operation R in the point group Gy(k). From
Eq. (8) we see that this fact has the consequence that

12 G. Ya. Liubarskii, The Application of Group Theory in Physics
(Pergamon Press, Inc., New York, 1960), p. 95.
3 P. Rudra, J. Math. Phys. 6, 1273 (1965).
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if the 3r-component vector e(ko4) is an eigenvector of
C(k) corresponding to the eigenvalue wj(k), then the
vector T(k; R)e(kod) is also an eigenvector of C(k)
with the same eigenvalue w2(k). However, because
there are only f, linearly independent eigenvectors
{e(kad)} (A=1,2,--,f,) corresponding to the
eigenvalue w?(k), the vector T(k; R)e(koA) must be
some linear combination of these f, eigenvectors:

T(k; R)e(kod) = fz"T‘;;(k; Re(kol’).  (44)
A'=1

The 4 f, X f, matrices {t'”’(k; R)} stand in a one-to-
one correspondence with the operations {R} of the
point group Gy(k), and can be shown® to provide a
unitary multiplier representation of this group. In fact,
in the absence of accidental degeneracy the repre-
sentation of Gy(k) provided by the matrices {t‘” (k; R)}
is irreducible.™

However, in the most general case the index ¢
cannot be used to label the irreducible representations
of Gy(k) contained in the representation of this group
provided by the matrices {T(k; R)}. The index ¢ has
been introduced to label the distinct eigenvalues of
C(k). It canhappen that theeigenvectorscorresponding
to two distinct eigenvalues w?(k) and w?(k) (o-# o)
which have the same degeneracy, ie., f, =f, , are
transformed into the same linear combinations of
each other under multiplication by the matrix
T(k; R). That is, we have the relations

Ia
T(k; R)e(kod,) = > 717, (k; R)e(kol;), (45a)
=1

for
T(k; R)e(ko'A) = ¥ 7(%) (k; R)e(ka'2;) (45b)
i)

for each R in Gy(k), where ©'(k; R) = v (k; R).
In other words, the two sets of eigenvectors {e(kod)}
and {e(ko’2)} associated with unequal frequencies
w,(k) and o,.(k), respectively, transform according
to the same irreducible multiplier representation of
Gy(k). To allow for such possibilities, we replace the
single index & by a double index (sa), where s labels
the irreducible representations of Gy(k) contained in
the representation {T(k; R)}, whilea (= 1,2, ,¢)
is a repetition index which distinguishes the different
Ji-fold degenerate eigenvalues «? (k) whose associated
eigenvectors {e(ksald)} transform according to the sth
irreducible representation. The numbers f, and c,
must therefore satisfy the relation

> fies = 3r. (46)

4V, Heine, Group Theory in Quantum Mechanics (Pergamon
Press, Inc., New York, 1960), p. 44.
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From the preceding discussion we are led to the
conclusion that in its most general form Eq. (44) can
be written as

1o
T(k; R)e(ksat) = 3 7i)(k; R)e(ksal’),
A=1

2=1a29“'5f35
a=1,§,'--,c

(47)

The matrices **'(k; R) have been tabulated by
Kovalev?® for k vectors corresponding to symmetry
points in the first Brillouin zone for crystals belonging
to all 230 space groups.

The determination of which irreducible multiplier
representations of Gy(k) are contained in the repre-
sentation {T(k; R)} is carried out by the use of the
character orthogonality theorem which yields the
result that!3

¢ = i 3 £9(k; Ry<y(k; R) (48)
R
where
1(k; R) = Tr 9(k; R), (48"
x(k; R) = Tr T(k; R). (48")

Substituting Eq. (47) into Eq. (43), we obtain
finally the conditions imposed on Dy, 01 (k; u) by
the symmetry and structure of a crystal:

Dyapiyarr(ks 1) = 3 730k RY*75)L(k; R)
Ards
X Dsallzs'a’}.g(k; u)' (49)

When the representation matrices {t'”(k; R)} of the
irreducible multiplier representations s and s of Gy(k)
contained in the representation {T(k;R)} are sub-
stituted into the right-hand side of Eq. (49) for each
of the operations R of G,y(k), the resulting equations
determine the independent nonzero elements of the
matrix Dy,;,,1(K; 4} and any relations among them.

Somewhat less detailed information about the
structure of this matrix is obtained if we divide both
sides of Eq. (49) by 4, the order of Gy(k), and then
sum both sides over the elements R of Gy(k). The
orthogonality of the representation matrices expressed

* 0. V. Kovalev, Irreduciple Representations of the Space Groups
(Academy of Sciences of the Ukrainian S.S.R., Kiev, 1961)
[English transl.: Gordon and Breach Science Publishers, Inc., New
York, 1964]. It has been pointed out to one of the authors (A.A.M.)
by Dr. J. Zak that the irreducible representations associated with
severak k vectors corresponding to symmetry points on the boundary
of the first Brillouin zone have been omitted from Kovalev’s tables.
For example, the symmetry points for the cubic system missing from
Kovalev’'s book are (I) simple cubic: (k., n/a, k,), (k,, mla, 0),
(mla, k,, k,); (2) face-centered cubic: (k,., 2n/a, k,), (k,. 2u/a, k,),
(mfa, k,, 2mla) — k,); (3) body centered cubic: (m/a, n/a, 0),
(k.,(2w/a) — k,,0), where a is the lattice parameter, These omissions
will be rectified in a forthcoming book by Casher, Gluck, Gur, and
Zak.
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by13

; 7100k R*r50(k; R) = (h/f)0,505,3,0:0  (50)

yields the result that
Dsaﬂ.:s’a’l’(k; u) = 633'611’(1/.[9)12 Dsall:sa'll(k; u)' (51)

We can express this result in the conventional notation
by the statement that unless j and j* label modes which
transform according to the same row of the same
irreducible representation of Gy(k), the matrix
element D;;(k; u) vanishes. As a corollary to this
result we also see from Eq. (51) that if no irreducible
multiplier representation of Gy(k) appears more than
once in the reduction of the representation {T(k; R)}
(in which case we can suppress the repetition indices
a and a’), then D,;.(k; u) is diagonal in the indices j
and j".

It should be pointed out that the results given by
Egs. (49) and (51) hold for any value of k inside or on
the boundary of the first Brillouin zone of the crystal.
However, at a general point of the zone the point group
of the wavevector Kk, Gy(k) consists of only the
identity €. There is only one irreducible representation
of this group, and it is one-dimensional with
y'V(k; € = 1. Meanwhile y(k;R) is 3r, so that
according to Eq. (48) ¢, = 3r. From Eqs. (49) and
(51) we see that there is therefore no simplification in
the structure of the matrix D(k) which is required
by symmetry for a general value of k. The results
given by Egs. (49) and (51) can predict simplifications
in the structure of D(k) only when k is a point of
symmetry inside or on the boundary of the first
Brillouin zone, i.e., when k is a point for which G,(k)
consists of more than the identity.

There is a final degeneracy of Dj;;.(k; z) which is
not predicted by the preceding treatment. This is that
for z # 0, D,;(0; z) vanishes if either j or j*, or both,
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refer to an acoustic branch of the phonon spectrum.
This conclusion follows from the fact that as a
consequence of infinitesimal translational symmetry
®,(0) vanishes if j refers to one of the three acoustic
branches.’® As a result of this, D{®(0;z) vanishes
for z # 0, for j an acoustic branch. From the Dyson
equation (1) it is seen that if P;;.(0; z) is finite, the
vanishing of D{®(0;z) implies the vanishing of
D,;;(0;z). In fact it is shown in Appendix A of
Ref. 1 that infinitesimal translational invariance forces
P;,;(0, z) to vanish if either j or j*, or both, refer to an
acoustic branch, from which our original statement
follows.

To conclude this note we return to the problem
which prompted the investigation described in it. We
consider the structure of the phonon propagator
corresponding to the wavevector k = 0 for a crystal
of the rocksalt structure. If we neglect for the moment
the macroscopic electric field associated with the
longitudinal optical modes of long wavelengths, the
point group of this wavevector is O,. Because no
operation of the space group of the rocksalt structure
O} can interchange the two sublattices, the matrix
element T,5(x«’ | 0; R) takes the simple form in the
present case

T,(kx’| 0; R) = R,40(x, «'). (52)

The matrices {T(0; R)} clearly provide an ordinary
representation of the point group O,. From Eq. (52)
it follows that

7(O;R) =23 R, =22cosd £+ 1), (53)
where ¢ is the angle through which the rotation
described by the matrix R is carried out, while the +
sign applies if R describes a proper rotation and the
— sign applies if the rotation is improper. By the
use of Eq. (53) we obtain the following character
table:

R E 8C, 3G, 6C,

6C; I 85, 30, 6S, 60,

40, R) 6 0 -2 2

-2 —6 0 2 -2 2

The reduction of the representation of G,(0) provided
by the matrices {T(0; R)} yields 2I';5, where I';5 is a
conventional name for the (three-dimensional) polar-
vector irreducible representation of the point group
0,.*® One irreducible representation I'j; clearly
corresponds to the three acoustic modes, while the
second corresponds to the three optical modes. The
fact that I';5 appears twice in this reduction ordinarily
would imply that D,;(0; z) is not diagonal in j and

j', according to the discussion following Eq. (51).

However, in the present case the diagonal terms of
D,;(0; z) for which j refers to an acoustic branch,
and the off-diagonal terms for which either j or j’
refers to an acoustic branch vanish. We therefore find
that the only nonzero elements of D,;.(0; z) are the
three diagonal elements D,,(0; z) where j refers to one
of the three optical branches. Moreover, because I';;
is a three-dimensional irreducible representation,

18 Reference 6, p. 13.
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these three nonzero diagonal elements are all equal.
Thus we have reached the conclusion that for an ionic
crystal of the rocksalt structure, the phonon propagator
D;;(0; z) is diagonal in j and j', that the only nonzero
diagonal elements are the three associated with the
optical branches, and that they are all equal.
However, this conclusion is not correct because we
have ignored the macroscopic electric field which
accompanies the long-wavelength longitudinal optical
vibrations. It is now well known!? that this field splits
the triple degeneracy of the optical modes at k = 0
by raising the frequency of the longitudinal mode above
the frequency of the (now) doubly degenerate trans-
verse optical modes. The degeneracy of the acoustic
modes at k =0 is not lifted by the macroscopic
electric field, and D,;(0; 2) still vanishes if j and ', or

17 Reference 3, Sec. 7.
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both, refers to an acoustic branch. Therefore, D;,.(0; z)
remains diagonal in j and j', and the only nonzero
diagonal elements are still those associated with the
optical branches. However, now the two diagonal
elements associated with the doubly degenerate
transverse optical modes are equal, and are different
from the diagonal element which is associated with the
longitudinal optical mode. This is the result obtained
in Ref. 1.

It is the particularly simple form of the phonon-
propagator matrix at k = 0 in ionic crystals of the
rocksalt structure which enables the theory of the
fundamental lattice vibration absorption in such
crystals to be developed free of the algebraic com-
plications which would otherwise arise from the
necessity of having to solve a matrix Dyson equation
for the propagator.!
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Unitary irreducible representations of the Poincaré group, corresponding to zero mass and finite
helicity, are reduced with respect to the subgroup of homogeneous Lorentz transformations. The action
of the energy-momentum operators in the basis suited to this reduction is examined.

INTRODUCTION

Several recent papers in elementary particle physics
have considered in one way or another the possibility
of embedding the Poincaré group in a larger non-
compact group.! By working within one representa-
tion of the larger group, one may be able to correlate
several different representations of the Poincaré group
in a useful way. Though the immediate physical
motivation in each case may be different, it would be
useful to know in general how to decompose unitary
representations of such a large group into parts
irreducible under the Poincaré group. This is part of

* Work supported in part by the U.S. Atomic Energy Commission

T Present address: Tata Institute of Fundamental Research,
Bombay, India.

! Representative of the varied nature of the possibilities are:
C. Fronsdal, in Proceedings of the Third Coral Gables Conference on
Symmetry Principles at High Energy (W. H. Freeman & Company,
San Francisco, 1966); H. Ruegg, W. Ruhl, and T. S. Santhanam,
Helv. Phys. Acta 40, 9 (1967); E. H. Hoffmann, Phys. Rev. Letters
16,210 (1966), and Commun. Math. Phys. 4,237 (1967); Y. Nambu,
Progr. Theoret. Phys. 37, 368 (1966), and Phys. Rev. 160, 1171
(1967); N. Mukunda, E. C. G. Sudarshan, and A. Bohm, Phys.
Letters 24B, 301 (1967).

the general problem of reducing the unitary repre-
sentations of a given noncompact group into unitary
irreducible representations (UIR’s) of a noncompact
subgroup, and of trying to understand the representa-
tion of the whole group expressed in the basis suited
to this reduction.

In previous papers, we have considered the reduc-
tion of unitary representations of 0(2, 1) and 0(3, 1)
with respect to the subgroups O(1, 1) and 0O(2, 1),
respectively.? We have also examined some of the
properties of the generators of the whole group when
they act on irreducible representations of the relevant
subgroup. In the present note, we examine the UIR’s
of the Poincaré group corresponding to vanishing
mass and finite helicity, and carry out the reduction
of these UIR’s into UIR’s of the homogeneous
Lorentz group O(3,1). In particular, we examine
the nature of the generators in the basis made up of
UIR’s of O(3, 1).

2 N. Mukunda, J. Math. Phys. 8, 2210 (1967); 9, 50 (1968). We
refer to these as (A) and (B), respectively.
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However, this conclusion is not correct because we
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sentations of a given noncompact group into unitary
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subgroup, and of trying to understand the representa-
tion of the whole group expressed in the basis suited
to this reduction.
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tion of unitary representations of 0(2, 1) and 0(3, 1)
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It should be pointed out that reductions of UIR’s
of the Poincaré group with respect to O(3, 1) have
been carried out in the past.? However, it appears that
the nature of the generators of the Poincaré group in
this basis has not been considered previously.

In Sec. 1, we recall the form of the principal series
of UIR’s of the homogeneous Lorentz group O(3, 1).
These are the only UIR’s with which we are concerned
here. Section 2 contains the relevant material on the
UIR’s of the Poincaré group corresponding to zero
mass and finite helicity (lightlike representations). In
Sec. 3, we carry out the reduction of these UIR’s of
the Poincaré group into UIR’s of O(3, 1). Lastly, in
Sec. 4, we consider the action of the generators of
the Poincaré group in the O(3, 1) basis.

1. PRINCIPAL SERIES OF UIR’S OF 0(3,1)

As is well known, the homogeneous Lorentz group
O(3, 1) has for it’s covering group the group SL(2, C)
of all complex unimodular matrices in two dimen-
sions.* The Lie algebra of O(3,1) [equivalently, of

SL(2, C)] is spanned by the six elements J;, K;
(j =1, 2, 3) obeying the commutation relations

Uis il = i€y,

Vi Kl = i€ Ky, (L.1)

[Kja K] = _iejkl‘]l’

J; are the generators of spatial rotations while the
K; generate pure Lorentz transformations. There are
two Casimir invariants for O(3, 1),
C,=KK;,—-JJ;, Co=KJ,. 1.2)
In a UIR of 0(3,1), J,, and K, are self-adjoint
operators. There are two kinds of UIR’s of O(3, 1),
namely the principal series, and the supplementary
series.®> Here, we only need the former; UIR’s of the
principal series may be labeled in the form {j,, p}; jo
is a nonnegative integer or half-odd integer, while p
is any real number. Different pairs {j,, p} denote
inequivalent UIR’s. C; and C, may be expressed as

(1.3)

The explicit structure of the UIR {j,, p} may be
exhibited by introducing a basis in Hilbert space made
up of orthonormal eigenvectors of J2 and J;. In any

Co=14p"—ji Co=pjp.

3 I. S. Shapiro, Sov. Phys —Doklady 1, 91 (1956); Chou Kuang-
Chao and L. G. Zastavenko, Zh. Eksperim. i Teor. Fiz. 35, 1417
(1958) [Soviet Phys.—JETP 8, 990 (1959)].

4 I. M. Gel'fand, R. A. Minlos, and Z. Ya. Shapiro, Representa-
tions of the Rotation and Lorentz Groups and Their Applications (The
Macmillan Company, New York, 1963).

5 See, for instance, Ref. 4, p. 200.
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UIR of O(3, 1), each finite-dimensional UIR of the
compact subgroup O(3) generated by J; can appear
no more than once. The members of this orthonormal
basis are | j, m) and obey

<j’m, |]m> = 63"i6m’m9

Fjmy = jGj+ Dljm), iy = mijm). P

In the UIR {jy, p}, j takes on the values
J=JosJo+ Ljo+ 2,0+, (1.5
while, of course, foreach j,m = —j, —j + 1,---, /.

Introducing the spherical components J,,, X,,, m =

+1, 0, —1, of the generators, their matrix elements

are given by
G'm'| o imy = 8,00 + ¥ &
G'm'| Kagljmy = G K 1) Ch 3

G+ 1 K 1)

= —il((j + 1" =G + D° + oI + D@+ IT,
GIK 1) = pioliG + DI,

(= UK L) = —il(j* = DU+ pH1i2i — DE.
(1.6)

2. ZERO-MASS REPRESENTATIONS OF THE
POINCARE GROUP

The ten generators of the Poincaré group J;, K;,
P,, H obey the commutation rules (I.1) and the
following:

[Jj’Pk]‘:iejklPls [Jj’H]=O’
[Kj,Pk]=i6ijs [Kj,H]":in’
[P, P,] = [P;, H] = 0.

@0

Unitary irreducible representations of the Poincaré

group
H? = PP,

i I

2.2)

corresponding to zero mass, finite helicity, and posi-
tive energy may be labeled by the helicity s of the
representation. Here, s is an integer or half-odd
integer, either positive or negative or zero. Such UIR’s
are most easily constructed in a Hilbert space J€ of
momentum wavefunctions in which the generators
H and P; are diagonal.® Vectors f in J correspond
to complex-valued functions f(p) of a three-dimensional
vector p, with the inner product (f,g) and norm

8 J. S. Lomont and H. E. Moses, J. Math. Phys. 3, 405 (1962).
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| £ being given by

(fre) = f %f*(p)g(m, o = pl,
17l = (LN < .

Let us denote the Cartesian components of p by p;,
j=1,2,3. Then the generators are represented as

2.3)

follows:
. d 0 5Dy
J, = - + —
' I(Pz ops P3 ) (0 + Ps)
. 0 0 Sps
Jy = — + —
’ I(Ps aPl —h ) (0 + Ps)
0 0
Jy= —i -~ + s
? ‘(P1 aP2 aPl) ’
K = —iw 0 — P2 (2.4)
dp,  (w + ps)
0 SP
K, = —io—+ ———,
’ ops (o + ps)
Ky = —iwd/0p;,

P,=p;, H=o.

The effect of a finite Poincaré transformation on a
wavefunction f(p) has been given by Moses.’

3. REDUCTION WITH RESPECT TO 0(3,1)

We wish to reduce the representations of the
Poincaré group given in Sec. 2 into irreducible
representations of O(3,1).8 [For definiteness, we
will consider the case with nonnegative integral s.]
To this end, we change from the Cartesian variable
p; to spherical-polar coordinates w, 8, ¢:

p1=wsinfcos ¢, p, = wsinbsin ¢,

3.1

Ps = wcos b,

and simultaneously define a new wavefunction
f(w, 6, ¢) to represent the vector f which was pre-
viously represented by the wavefunction f(p):

f—fw, 0, ¢) = e/ (p).

Then the scalar product becomes

(3.2)

(f, © =wa dcofzndtpfﬁsin 0 db f*(w, 8, @)g(w, 6, @)

0 0 0 (33)

and the effect of the generators on the functions
—HMoses, Ann. Phys. (New York) 41, 158 (1967).

8 It should be pointed out that we are considering UIR’s of the

proper inhomogeneous Lorentz group only, without including the
operations of space and/or time reflection.
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flw, 8, @) is given by

0 0 cosg
J,=ising— +icospcotl — + s—=
=il 'pae feos ¢ dy sin 6’

7} 0 sin @
Joy= —icosgp— + isingpcotd— + s
2= s g, P e T sine
P
Jy= —i—,
3 a¢
K, = —isin 8 cos w—a——ic036cos 9
! L 2
+ i sing 9 — 4+ ssin @ cot 6, 34
sin 0 dy
K, = —isin 0sin w-a——icosﬁsin 9
: 7% 30 UFY,
—icosq)i—scosq)cotO
sin 0 dg

K;= —tcosﬁwaiw+ 1sm0§6

P, =wsinfcos ¢, P, = wsinbsin g,

Py,=wcosl, H=w.

The structure of the generators J;, K; above is almost
exactly that which was obtained for them in (B); there,
we were dealing with UIR’s of O(3, 1) of the principal
series realized in a Hilbert space of functions on the
unit sphere. To cast /; and K; into exactly the same
form as in (B), we essentially have to perform a
Fourier transformation with respect to the variable
In w. We carry this out as follows. Let x be related to
o by

w=e" (3.5)

so that 0 < @ < o corresponds to —oo < x < 0.
We first replace the wavefunction f(w, 6, ¢) by a new

one, f1(x, 8, ¢):
fl(x’ 0’ ‘P) = wf((u, 0! <P), (36)

and then express fi(x, 8, ¢) as a Fourier transform
of a function fo(p, 0, ¢):

ﬁ@&@=@ﬁﬂfﬂ%m&ww.an

Thus all the functions f(p), f(w, 0, ¢), fi(x,0, ),
fa(p, 0, @) related to one another by Eqs. (3.2),
(3.6), and (3.7) represent the same vector fin JC. The
scalar product has the form

@ 2r T
(f, g) = f dx L do ﬁ sin 0 d f1(x, 0, @)gi(x, 0, @)

0 27 T
=£tmﬁcwﬁﬁnewfﬂmawmxma¢>
(3.8)
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Now we can express the effect of the generators J;, K;
on wavefunctions fy(p, 0, ¢) by the differential
operators

.0 ., 0  scos
J1=tsm¢p%+zcosq)cotﬁa—(p+ﬁ,
Jy = —icos 2+isin cot0i+m
: ‘pae v dg  sinb’
13_—'_1'2'

o9
K1=(p+i)smt9cos<p—icosOcosrpi
00
sin g 0 (3.9)
+ i (p-——-i—ssmtpcotﬂ
sin 6 dg
K2=(p+i)smﬂsm<p—icos@sintpa%
—‘C(_)S(pi—scosqvcotﬁ,
sin 0 do

K3=(p+i)c056+isin06%.

These coincide exactly with the generators of O(3, 1)
as given in (B) (except for a trivial change of sign of
the K;). Evaluating C,, and C,, from (3.9) we get

(3.10)

Thus by representing the vectors f of J¢ by the wave-
functions f3(p, 0, ¢), we have achieved the reduction
of the UIR of the Poincaré group into UIR’s of the
subgroup O(3,1). The variable p in the function
Jf2(p, 0, ¢) is the same parameter that appeared in
Sec. I in labeling the principal series of UIR’s of
0(3, 1). The result of these considerations is the
following.

C,=1+4p2—s% C,=ps.

Theorem: The unitary irreducible representation
of the Poincaré group corresponding to zero mass,
positive energy, and finite nonnegative integral
helicity s reduces into a direct integral of UIR’s of the
subgroup O(3, 1), belonging to the principal series
of UIR’s of O(3, 1); each UIR of the type {s, p}, for
every p in the range — o0 < p < o0, appears exactly
once.

It is obvious that if s is not necessarily integral and
nonnegative, we merely replace s by |s| in the statement
of the above theorem.

The Casimir invariant of the O(3) group J2 is

2 2

JE = — th —
[aa2 oot

2

1 {a%z — 2is cos 08% - SZ}]. (3.11)

sin® 6
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Orthonormal eigenfunctions of J% and J, are well
known.® They are the D functions of angular-momen-
tum theory

J*D (g, 6,0) = j(j + DD}(¢, 6, 0),
JsD;"'»S((p, 05 O) = mD;n,s(w’ 0, O)-
With the help of these functions, we can construct
a basis in the Hilbert space J¢ of the UIR of the
Poincaré group, corresponding to the states [j, m)

appearing in Eq. (1.4). Namely, we define a set of
“ideal” vectors in JC,

(3.12)

¥, im (3.13)
whose wavefunctions written in terms of the variables

x, 0, ¢ are
W, — (2m)2PQ2) + 1)/4mE D (g, 6,0). (3.14)
Using the expression (3.8) for the scalar product, we
establish

Foryrm s Yosm) = 0(p" = p)0yr ;0.

From the completeness properties of the D, functions

over the unit sphere, and the Fourier expansion

theorem for square-integrable functions, we see that

every normalizable vector f'in J€ may be “expanded”
inthe'¥',;,:

o 3

f=2 2

j=sm=~j J—

(3.15)

dpf,m(p)‘l”pm (3.16)

The scalar product has the form

fo=3 3 J dof 1 (PEm(p).  (.17)

j=s m=—j

The vectors ¥,;,, are “ideal vectors” and are not
normalizable. Apart from phase factors, these states
WV, for fixed p are precisely the states| jm) introduced
in (1.4) as a basis within the UIR {s, p} of O(3, 1).
Acting on a wavefunction f;,,(p) corresponding to a
vector f in their domain, the ten operators J;, K;
leave p unaltered and (except for some trivial phase
factors) connect different values of j, m with one
another according to the matrix elements (1.6). We
have

st slp) =
(X wf),m(P)
= —C, 14 3 3% = 9@ + D
X (o — iNficr,mne(p)
+ Cm—M ar alps/GOF + 1)) 15, m—2(p)
+ C Al + 1P = DG+ D+ D
X (p = i(j + D) fsramon(p)- (3.18)

® A. R. Edmonds, Angular Momentum in Quantum Mechanics
(Princeton University Press, Princeton, N.J., 1957), Chap. 4.

LiGj + 1)] Coar 31 2S5 mnt(P),
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Finally, we also have

(CuNim(p) = (1 + p* — ) fim(p),

4. THE ENERGY-MOMENTUM OPERATORS

At the end of the last section, we have seen how
the generators J;, K; of the homogeneous Lorentz
group act on a vector f given by the wavefunction
Jim(p). Now we see how the energy-momentum
operators H and P; act on these wavefunctions.

Let us begin by writing the generators P; and H
in terms of x, 0, ¢; their effect on a wavefunction
Si(x, 8, @) is given by

P, = ¢*sin O cos ¢,

(3.19)

Py, = €*sin 0 sin @,

o= 4.1

Py =¢"cos b,
Since we already know the effect of K, and since
one can obtain P; in terms of the commutator of K;
and H, it suffices to consider here the operator H
alone.
Let f be a vector in the domain of H. Its wavefunc-
tion fi(x, 0, ¢) then obeys

o) 2r T
nf||2=f "XL d«pﬁsinedmfl(x,e,qu)l%oo,

0 er b4
VHf | =f de d(pﬁ sin 0 d6 ** | fi(x, 6, ¢)|* < 0.
4.2)

Clearly, (4.2) imposes severe restrictions on the
behavior of fi(x, 0, ¢) as x — o, and suggests that
the Fourier transform of f,(x, 0, ¢), namely f5(p, 0, ),
can be analytically continued into the upper-half
complex p plane. This is exactly the situation discussed
in detail in (A), where we were concerned with UIR’s
of 0(2, 1). Using exactly the arguments given there,
we arrive at the following conclusions®: If a vector
f is in the domain of H, then for each j, m, the function

Sim(p)

is the boundary value (in the sense of the limit in the
mean) of an analytic function y;,,({) of { = p + in,
as n — 0, . ,,(0) is analytic in the strip 0 < 5 < 1
(at least); for each fixed # in this range, we have
) J
2 2

i=sm=—j J—

o]

dp |ym(p + im)|* < 0. (4.3)

As §n—1_, p;,({) approaches (in the limit in the

10 The relevant theorems on Fourier and Laplace transforms may
be found in D. V. Widder, The Laplace Transform (Princeton
University Press, Princeton, N.J., 1941), Chap. VI, Sec. 8.
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mean sense) a square-integrable function of p, which
we can write as

Simlp + D). 4.9)
We have
(H)jm(p) = fim(p + 1) (4.5)
and
535 [Tdplfimte+DE< 0. (46)

j=s m=-—j J—
The correspondence between vectors f in J€ and the
wavefunctions f;,(p) is, in any case, only up to sets
of measure zero; that is to say, given a vector f, each
member of the sequence of functions of p, f;,.(p) is
determined only up to sets of measure zero. None-
theless, if f is in the domain of H, the functions f,,(p)
(known only up to sets of measure zero), suffice to
determine unique analytic continuations into the
upper-half complex p plane; calling these analytic
functions ;,,({) as above, the boundary values f},,(p)
and f,,(p + i) are limits in the mean of y,,({) as
Im{—0, and 1_, respectively. Thus from the
functions f;,.(p), we can determine (up to sets of
vanishing measure) the functions f;,(p + i), and
Jim(p + i) is the wavefunction of the normalizable
vector Hf.

As is to be expected, it is meaningless to talk of the
effect of the operators P;, H on the ideal, nonnormal-
izable states V',;,. They may only act on linear
combinations f of the V', , if the “coefficients of the
linear combination” f;,,(p) possess all the properties
mentioned above and permit the requisite analytic
continuation in p. In this way, the energy-momentum
operators “connect” different UIR’s of 0(3,1) to
one another.!

We finally compute the effect of the operators P, on
a vector f in their domain. Using spherical components
P, , the relation

(K> Hl = iP,,,

and Eqgs. (3.18) and (4.5), we find
(PJIf)jm(P)
= C,1 75 3 (% — s/ j(2) 41‘ 1)]%fj—1,m—ﬂl(P + i)
= Colar 3 2051GG + D) fimeai(p + 1)
— O G+ D= G+ DR+ DI
X fivr,m-ar(p + i) (4.8)
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! This situation is quite similar to that encountered in the papers
of Ref. 2.
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The basic assumptions of the theory are strong unitarity, Bogoliuboy causality, completeness of the
in (out) fields on a unique vacuum, and Poincaré invariance. The a!gebra of II functions, which are
integral operators in the form of tempered distributions, is the main techmca.l tqol deve!oped here.
These 1T functions can be regarded as generalized step functions where the combination law is such that
products with & functions and their derivatives are well defined. An application of this algebra of II
functions in the context of the above assumptions leads to the current-formalism representations of
nth-order functional derivatives of the current and S,;. These are alternatively called the R, and P
product representations, respectively, the counterparts to the R and @ product representations of the
nth-order derivative of the field and S, in the field formalism. In a subsequent paper these relations are
used to derive the integro-differential equations of Pugh [R. E. Pugh, Ann. Phys. (N.Y.) 23, 33'5 (1961)]
in a form amenable to a diagrammatic analysis. The perturbation series is then shown to be unique and
finite with no cutoffs and a number of parameters that is independent of (increases with) the order of
expansion for renormalizable (nonrenormalizable) interactions.
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1. INTRODUCTION

Asymptotic quantum field theory (AQFT) is
characterized by the requirement that the interacting
fields become free fields for large times. In combination
with other reasonable assumptions, this has led to the
reduction formulas of LSZ' and a representation of
the Sop on the mass shell (m.s.) in terms of @ products
of interacting fields. Its primary success was to provide
a basis for the study of analyticity. As the reduction
formulas provided a representation of only the m.s.
Sop , it was not yet suited for dynamical calculations.
However, by assuming that the @ product be the off
m.s. extension of the Sop and that microcausality
holds, an infinite set of integro-differential equations
for the point functions was derived.! The perturbation-
theoretic solution of these equations was demon-
strated to exist at least formally (up to convergence
of the expansion), but the question of uniqueness and
of attendant boundary conditions was not answered.

Subsequent to LSZ, several proposals have been
made for a finite formulation of field theory along
similar lines.? The work of Pugh?® was based on a strong
unitarity condition and a ‘“dynamical assumption.”
This “dynamical assumption” was later shown to be
equivalent to strong Bogoliubov causality.* Strong

* Based in part on the Ph.D. thesis Syracuse University, 1966,
during which time the author was a NASA Trainee.

T Work supported in part by a NSF research grant.

{ Present address: Department of Physics, University of Pitts-
burgh, Pittsburgh, Pennsylvania 15213.

1H. Lehmann, R. Symanzik, and W. Zimmermann, Nuovo
Cimento 6, 1122 (1957).

2 M. Muraskin and K. Nishijima, Phys. Rev. 122, 331 (1961);
B.V.Medvedev, Zh. Eksp. Teor. Fiz48, 1479 (1965)( Sov.Phys.JETP
21, 989 (1965)]; V. Ya. Fainberg, Zh. Eksp. Teor. Fiz. 47, 2285
(1964)[ Sov.~Phys. JETP 20, 1529 (1965)]; Ref. 3; and others.

3 R. E. Pugh, Ann. Phys. (N.Y.) 23, 335 (1963).

4T. W. Chen, F. Rohrlich, and M. Wilner,J. Math. Phys. 7,
1365 (1966).

unitarity and Bogoliubov causality are two physically
motivated constraints that can be applied directly to
the Sop without the auxiliary construct of a field. Thus
the interpolating field need never enter the formalism.
If the field is introduced, the assumptions serve to
specify the off m.s. extension of the Sop as the @
product of fields and the off m.s. extension of the
field itself as an R product of fields. This result has
been reproduced in the context of a weak free-field
equation® as introduced by Chen.® It will be demon-
strated in the present work that without the field one
is led to representations of the off m.s. Sop and current
by P and Rp products, respectively, of currents. The
P and Rp products are formed analogously to T and
R products, only with the 6 function replaced by the
IT function. The latter can be regarded as a generaliza-
tion of the 6 function.

The IT function and its further generalization, the
[Tt function, are the primary technical tools of this
development. They form an algebra over a subspace of
the space of tempered distributions and have the
advantage over 6 functions in that they can form
products with a wider class of distributions, in par-
ticular, Dirac é functions and their derivatives. They
are identified in the theory as multipliers on current
products and, in fact, [I multiplication on field
products in general does not exist. The complete
utilization of these functions leads to the elimination
of the interacting field and enables the generalization
of operator expressions for current and Sop derivatives
as functionals of currents. These are the current
analogs of the 6 and R product representations of the
Sop and interpolating fields, respectively.

The validity for physics of the operator expressions

5J. G. Wray, Ph.D. thesis, Syracuse University, 1966.
S T. W. Chen, Ann. Phys. (N.Y.) 42, 476 (1967).
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derived here is demonstrated a posteriori in a subse-
quent paper’ where a perturbation expansion repro-
duces the results of renormalized Feynman-Dyson
(FD) theory to all orders computed with a @3(L;,,)
interaction. Further, the formalism leads naturally to
physically motivated boundary conditions for the
integro-differential equations, resulting in unique
matrix elements. It also leads to a program of diagram-
matics. In the present work we will be content to
demonstrate that, at least formally, unrenormalized
FD is a solution of the equations.

The main assumptions and notation are covered in
Sec. 2. In Sec. 3, ordering theorems with respect to
the IT(ITIVY) functions are derived. In Sec. 4 the
analogs of the representation of the field by retarded
products and of the Sop by ® products are derived for
currents. Then, in the same context it is demonstrated
that the Feynman-Dyson algorithm is a formal
solution of these equations. The extension of these
arguments with possible application to nonrenormaliz-
able theories is facilitated in the manner of Chen’s
operator theory. A summary of the results is given in
Sec. 5.

2. ASSUMPTIONS

The assumptions of AQFT have evolved somewhat
over the years, but by and large contain statements of
Lorentz invariance, unitarity, causality, and the
asymptotic condition. The latter condition is not
necessary here, since the interpolating field is absent
from the formalism. In addition there is the necessary
apparatus for constructing the space of physical
states, in this case a Hilbert space. A recent review
article® includes a statement of the assumptions and
discusses their motivation. Here we will be content to
state them briefly as a vehicle to introduce some of the
notation of the theory.

Assumption (I): The theory is required to be Lorentz
invariant. In this regard the metric of Minkowski
space will have signature + 2.

Assumption (if): There exists a representation of the
free fields that is complete in the sense that all operators
in the theory can be expressed in terms of them.
Since only Hermitian scalar fields are to be considered,
this means that all admissible operators F will have
the representation

1
F = z—' dxy - dx, f(x, - x,) a7 a,:.

n=0H!
(2.1)

?J. G. Wray, J. Math. Phys. 9, 552 (1968), following article.
8 F. Rohrlich, Perspective in Modern Physics, R. E. Marshak, Ed.
(Interscience Publishers, Inc., New York, 1966).
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In this expression

av(x) = a(x,) = a,, = g 2.2)

is a free Hermitian scalar field satisfying the free-field
commutation relations; the coefficient functions,
Sfalxy -+ x,), are c-number distributions, symmetric
under permutation of the-4 vectors (x; - x,), and
the integration is over all space-time. In other words,
F is an operator-valued distribution on the Hilbert
space, J€, spanned by all polynomials in the creation
operator g} acting on the unique vacuum [0). Here

ar = ifda“a(x)‘i; 1.(x),

and f,(x) is a normalizable, positive-frequency solution
of the Klein-Gordon equation and will frequently be
referred to as a mass shell (m.s.) test function. For
this work it will be sufficient to restrict the coefficient
function f,(x, - x,) to &', the space of tempered
distributions.

The functional derivative with respect to a free field
will be employed extensively throughout this work.

The mth derivative of F, for example, is defined by
O"F

- 1
=2 — |dxy -
'6allm z f '

xfn+m(y1' Ut Vms X1t 'xn) by, " Ayt

dx,
da

Y1

(2.3)

and is seen to free the f,,,, from the m.s. constraint
of the free fields in m variables. Realizations of this
derivative are thoroughly discussed in the literature.®

As pointed out by Pugh,® it is necessary to dis-
criminate between strong (=) and weak (£) operator
equations with respect to the functional derivative.
A strong equation is valid even after an arbitrary
number of derivatives have been taken, whereas a
weak equation is not. Chen!! helped alleviate a con-
fusing situation by observing that the free-field
equation is most naturally interpreted as a weak
equation.

Ka, = (0, — mda, <0, 2.4
with
) i)
LK, =K, "o Kd(x—y). (2.9
da, da,

This convention will also be adopted here.

Assumption (iii): The Sop can be defined as a
unitary transformation between ¥, and ¥, , spanned

? F. Rohrlich, J. Math. Phys. 5, 324 (1964); F. Rohrlich and M.
Wilner, J. Math. Phys. 7, 482 (1966).

10 R. E. Pugh, J. Math. Phys. 6, 740 (1965).

11 Reference 6, p. 479.
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in (out)
by {a*""},
out S

ad = S*aihS, S* =S (2.6)

Unitarity has been assumed as a strong equality,
though for renormalizable interactions it follows as a
consequence of weak unitarity and the remaining
axioms.?

The stability of the vacuum and single-particle
state under § is also required.

Assumption (iv): It will be required that the currents
satisfy strong Bogoliubov causality,

e s 0, for x ~y and x"<)° (27)
da,
and
J, = s+ 198 (2.8)
oa,

where x ~ y means that (x — y) is spacelike. Bo-
goliubov causality, a restriction on the singularities
appearing at the origin of the light cone, and the
other assumptions imply the “dynamical” equation?®

(1 — B, )(idJ,[da,) = 11,,[J,,J,). (2.9)

The coefficients appearing in (2.9) are the tempered
distributions,

IL, = I, (xy; &n) = KK,0:,04(x — ARy — 1),

(2.10)
for
1, x0 > )0
b,=0(x—y = (2.11)
0, x° <y0,
and
By =1-— Hmy - Hw:' (2.12)

The product with II_ (xy; &7) is defined as a convolu-
tion in the right set of variables, (&%), such that, for
example

m,0/,,J,] = f d& dnTT,(xy; ElJs, J,). (2.13)

These are the same operator coefficients first discovered
by Pugh'4; they satisfy

Hiu = H:w’
I, I, =0,
- (2.14)
B:w = Ba::/’
In,,B,, =0.

12 T. W. Chen, Nuovo Cimento 45, A533 (1966).

13 This equation was first proposed by Pugh!? and later shown to
follow from the assumptions.®-® This later work is patterned after
similar work? which was for a representation of the dynamical
equation possessing only formal significance.

14 R. E. Pugh, J. Math. Phys. 7, 376 (1966).
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The connection with the notation of Pugh is simply

PR(X,}’) = H:cys PA(xa }’) = Hm'

Equation (2.9) can be seen to arise from the axioms
of the theory with the additional restriction that
(idJ,/0a,) have only é- and Ké-function singularities
at the origin of the light cone. If this is true, then one
can form the product (II,, + I ,)(idJ,/da,), since
II,,0(x — y) and II,,K.0(x — y) are well defined and
in fact vanish. From strong unitarity we obtain

(i(s']m/éay) - (lé‘lu/éaz) = [Jx’ Jv]’ (215)

which upon forming the product with II,, becomes

Hmy(ia‘lx/aay) é HCEU [JZ b J’U]’ (2' 1 6)
where

I1,,(idJ,/da,) = 0. .17

Equation (2.17) follows since with the restriction to
0- and Ké-function singularities at the origin of the
light cone and with strong Bogoliubov causality the
common support of its two factors vanishes. Further,
since I1,,(idJ,/0a,) =0 in the same manner, Eq.
(2.16) can be written

(H:t‘y + Hwa:)(us']z/aay) ; sz/ [st JyL
or
(1 — B, )] /da,) = I, [J,,J,).

To conclude this section, we mention the following
technical points. Only Heisenberg operators will be
used and bound states have been excluded from the
scattering states by construction. The compatibility
of the assumptions has not been proved. However,
the term-by-term existence of perturbation expansions
(convergence of the series is not known) for nontrivial
systems is suggestive that they are compatible.

3. OPERATOR ORDERING

In this section the P and P\) ordering of currents
will be introduced. In addition, ordering theorems and
domains of validity will be discussed. The presentation
is parallel to that for T ordering.'®

General Remarks

The ordered product of n operators has the follow-
ing general properties. For the operator O defined by

O(Al e An) = (Al e An)ordered’ (31)
we have:

(1) O is idempotent, 02 = 0.

(2) O is symmetric (for Bose fields) under permu-
tation of the operators to be ordered.

13 F. Rohrlich and J. G. Wray, J. Math. Phys. 7, 1697 (1966).
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(3) If the n operators are independent of each other,
the ordering process will be linear. But usually this is
not the case and in general ordering is a nonlinear
operation such that O(4 4+ B) # O(A4) + O(B) unless
A and B are independent.

In general, the n objects to be ordered will be
operator-valued distributions. For the work reported
here, the class of tempered distributions & will be
large enough so that the ordered products and their
respective ordering theorems are in general rigorous
and differentiable only as functionals to be folded
with test functions from &, the test function space of
tempered distributions.

The T product of fields, labeled by their space-time
points, is defined by

T—{»(Al..'An)E 2 01'--nA1"'Ans (32)
perm
(1:--n)
and
T(A, - A)= E 0,...,A4, A, (33)
perm
(.- n)
where
Or...n = Oy - 0n~2,n—16'n—1,n’ (3.4)
6, = 6(x;, — x)), (3.5)
and
4, = Alx) = A4,,. (3.6)

The T.(T_) orderings thus define ordering with
decreasing (increasing) times from left to right.

The idempotency of the T, ordering is guaranteed
by the multiplicative relations satisfied by 0, as a
distribution,

(3.7)

for 1 <i<j<n (3.8

In addition, there is the important completeness
relation,

8, + 0, =1. (3.9)

These expressions are reviewed because it will be
necessary to prove analogous relations for the distri-
bution II,; before it can properly qualify as the
elemental coefficient around which the P-ordering
concept is to be built. In this regard it is also important
to note that the product of 0,;’s as defined by (3.4) is
manifestly Abelian and associative. This, for example,
will not be a trivial observation for the product of the
I, ’s.

The P product is constructed analogously to the
T product with §,; — II ;. Tt arises in the formalism as
the ordering operation to be associated with currents
and will therefore be defined on products of currents.
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We have for P, products, respectively,

P.(J,---J)= z Im,... Ji-J,, (3.10)
perm
1--n)
and
P(J--J)= z O, 7,4, (31D
perm
1:--n)
where
Iy, = UMy, Hn——2,n—1Hn——1,n’ (3.12)

;= Hy(x,x55 v:95)
= Kz[Kacha:,xjAA(xi - yi)AR(xj - ya’)’ (313)

and
J;=J,, = J(x).

4

(3.14)

Let us now define the space 5, or indicating the four-
vector variables explicitly, ¥, . = F]

Ty,
901...,,,661...,”,
(3.15)

In (3.15) &;...,, is the space of test functions
of tempered distributions in the m-four vectors
(x;+++x,)and = ... is the linear space of functionals
formed from all possible products of the Il,; (i, j =
1,---,m) and unity. That F' < & follows from
n’ < &', the statement that all elements of =’ are
tempered distributions. ' is important since it
exhausts the space of all left multipliers of the Il
products of this theory with the exception of mass
shell (m.s.) test functions. But since the II,; vanish on
the m.s., multiplicative relations to be established on
' become trivial on m.s. test functions.

The II;; are tempered distributions that form an
Abelian, associative algebra on F'. The product law
for a chain of Il;; (3.12) is a convolution for each
repeated index. From (3.13) we see that each I1,; has
a left and right set of variables running over the
indices 7, J.

‘(Fl/---mE{(pL-'le---m; all

al m.. ., em... .}

(x;x;) = left set,
(y,v,) = right set.

The convolution is formed from the right set of one
I1,;, proceeding to the right to the left set of the Il
containing the first repetition of that index. Thus, for
example, the product for the repeated index 1 in a
particular chain is

convolution convolution

| | | }
H23H21(X2x1;y2u1)n45H61(x6u1;yGDI)II7HH19(L71x9;y1y9)9
(3.16)
where only those variables necessary to demonstrate

the convolution product have been explicitly stated.
This product is always defined, since the variables of



CURRENT FORMALISM. I. ORDERING THEOREMS FOR CURRENTS

the left set have bounded support.’® Associativity of
the product is simply the statement that the result is
independent of the order of performing the con-
volutions; i.e., for the example (3.16), the result is
independent of the order of integration in u,, v, . This
is demonstrated explicitly in Appendix A. The com-
mutativity of the product
[, M]=0 on & ,

(i#4,k+1)

fori,j,k,l=1,---m< oo (317)

is proved in Appendix B.

The idempotency of the P ordering is guaranteed
by the following multiplicative relations satisfied by
the II;; on ¥ (Appendix A)

WAL =10

2
and

H"Hl"‘i"':ﬁ""n=0’ for

i 1<i<j<n (319
These are the analogs of the 6 products, (3.7) and
(3.8). The analog of completeness is significantly
different,

Hij + H;’i =1- Bz’i’ (3-20)

and can be taken as the defining relation for B,;. The
physical significance of these operators may become
clear as the theory develops.

P-Ordering Theorems

In this section the basic ordering theorem for P
products will be derived. As previously discussed, all
P-ordered products and their associated theorems are
rigorous relations only as linear functionals on the
left space of multipliers 5’ (3.15). All relations proved
in this section will use (3.18)-(3.20) and the following
properties of the II,;, all of which are proved in
Appendixes A and B,

[HH’ Hkl] = 0’ (l #.], k # l):
Bijnl...i...lnk...,...,, =
The basic P-ordering theorem relates the P-ordered

product of n — 1 operators to that of n. From the
definition of the P ordered product, we have

P+(J1"'Jn)= Z Hyopdi e Jy,
R o)

(3.21)

(3.22)

which can be written
P+(J1 o 'Jn) = 2 H2'--n{Hl2(J1J2 e Jn)

perm
(2:--m)

+ Woa(Jodids oo J,) + - + Hl,l,l+1
X Uy SJiJp )+ (e - T J))
(3.23)

18V. Gorgé, Syracuse University Research Report SU-66-03
(1966).

541
Also, we have
My = H21H13 = H23H21H13
= H23H21(1 - B13 - Hsl)
= H23H21 - H23H21B13 - H23H21H31
= H23(H21 - H31)9 (3-24)
since
H23H21313 =0
and
H23H21H31 = H231H21 = H231 = H23H31-
In general, this analysis leads to
Hlmn = Hln(Hlm - Hnm) (325)

such that (3.23) becomes

P+(Jl"'Jn)
= 2 ... {1 — Byy — ) (JyJ, - -

perm
2.+ -m)

+ Mol — M)(Jedyds - Jn) + -+
+ Hz,z+1(Hu - Hl+1,1)(-]2' I Jy)
+ o+ My JJ0)}

= Z M. {(1 = By — Tp)(JyJo -+ J,)

perm
(2-.-n)

+ (H21 - Hsl)(J2J1J3' )+
+ My = DU LI d) + -
+ I0,,(Js" - - JnJl)}. (3.26)

)

By rearranging terms, (3.26) can be written

P.(Ji--J)= 2 .. {1 =Byp)(JiJs " J,)

perm
(2:::n)

+ Hy(Jz, Sy s+ )
+ o+ e Uy, W0 )
+ (e L, il 0 )
4 My Tl i)}
or
P.(J;--J)=(1—Bp)P.(Jy:J,)
+ [Pi(e T IRy (3.27)

forl?
[Pi(Js- - T, J1]RP = gzP;(Jz N B Jl]Rp e das
(3.28)

with
[J, Jl]Rp = Hu[Jz, Jil (3.29)

Equation (3.27) is the basic ordering theorem which,

17 The (') appearing on the right-hand side of (3.28) means the
P, ordering with respect to all currents butJ, .
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with its variations, can be summarized

P.(Jy J) =1 = Bp)P(Jy " J,)
+ [Pi(Je - Jn), Jl]ljﬁ’ (3.30)
and
P.(Jy--+J,) =1 = Bp)P.(Jp " J )y
+ [Jy, Pu(Je - Jn)]ﬁ,;a (3.31)
where
[Pi(Jy - T, Jﬂf}f, = [J1, Pu(Js " 'Jn)]g;,- (3.32)

In correspondence with the T-product ordering
theorems, both the Jacobi-type identities and the
factorization formulas for P products can be proved.
However, only the equivalence of the Rp product
and R, commutator are of importance to this work.
In Appendix C it is proved that

Ry =Rp, (3.33)
where Ry is the Rp product
i"Rp(Jo;J1° "+ J,)
= 2 Hepoooul - o, Sl Jal - o JL (3:34)
T
and Ry, the Ry commutator,
i"Rp(Jo; 1"+ J))
= [ o, alrps Jalres - Julrp- (3.35)

PIN1-Ordering Theorems

Chen® has extended this formulation of field theory
to a class of interactions larger than the renormal-
izable interactions through the introduction, via the

current Eq. (2.9), of a generalization of II;, T}
(I1,; = 1I}). The new current equation is!®
(- B2, s )
for o
N5 = (KK )V0,,A0 P (x — HAZ(y — n),
(3.37)
and!?
Afp(x — &)
Efdul CduyA (X — u)A yr
X (uy —ug) AUy — u)A gy — &)
1 d pezl)(x—é)
=— —_— 3.38
(277)4 Camy (P2 + ’nZ)AV-H ( )

8 The notation here is related to that of Chen’s by the corre-
spondence,

PP(x, ) =TIV

xv ?

PP (x,y) = H[“] .

'*V. Gorgé and F. Rohrlich, Syracuse University Research
Report SU-66-10 (1966).
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BV js defined by

1 — BN = [N 4 114, (3.39)
The motivation for this move is based on the fact that
I3 exists in product with K76(x — ), r < 2N. Thus
the current commutator and derivative of (3.36) can
have singularities at the origin of the light cone of the
order K0(x — y), r < 2N.

The same multiplicative relations hold as for II,,
and B,,

(M2 = MY

R ' (3.40)

Ty yz .
In fact the 1131 form an Abelian, associative algebra
on FI¥Y in the same manner that the II,, form an
Abelian, associative algebra on 5’ defined by (3.15).
FIANY or, with the dependent variables (x;-- - x,,)
explicitly indicated, F1\Y , is defined by

NY — N, . N
FIY =g, ,mM . all AR

all Pr...

ey

sm

n€Ci...n), (341

for Nfinite. Here &, .. ., is again the test-function space
for tempered distributions in the m four-vectors
(xy - x,,), and 7Y s the linear space spanned by
all polynomials of the IILM (i,j =1,---,m). That
FWT < & for N finite follows from the fact that all
7N enl M are tempered distributions.

The product law, and proofs of existence, associ-
ativity, and commutativity proceed in the same manner
as for 11, only with the superscript [N] added to all
spaces and objects entering the proofs. Thus, chains
of IIL} can be used to define P ordering with

corresponding ordering theorems valid on FI'7', We
have, therefore,
PN - Ty= 3 T g0, (3.42)
perm
(1-:-n)
PN -y = X OB g0y, (3.43)
perm
(L---n)
for
Y., = ARG MY, (44)
The ordering theorems of importance here are
PEYJ o d0) = (L= BEDILPEYJ, - )
:t [P;V](J2 e Jn)a Jl]Rpx’ (345)
and AP
PRI, d,) = (1= BP0,
+ [y, PRI, - - (3.46)

Jn)]gﬁf’: s
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for
[P[iN](Jz e d), Jl]RPQ’,
Ap*
= z PE};V]'(‘IZ e [Jl s JI]RP‘;"V. T Jn)9 (347)
=2 Ap
Ve, Jilgpy = T[T, 1), (3.48)
d [J:, Jl]ApN = “Hﬁv][-]z, Jib (3.49)
an

[Jla Pg;V](J2 T Jn)]Rp‘\Y = [PEQV](J2 o Jn)’ Jl]Api‘; .
Ap* Rp

(3.50)

The equality of the RE'! commutator and product can
also be proved on FI* by substituting IT — I1I¥1 in
the notation for the proof of R}, = Rj in Appendix
C. Thus we have on F17,

N1 RIN
Ry = Ry,

(3.51)
for

"RT(Ug; Iy 1)

= [ [y, Jl]Rp‘V: Jz]RpN’ °t Jn]RpN’ (3.52)

and
i"R[M(Jo; Jyoo n)
Z H[\]

perm
(L+--n)

“[Jos i), Jab o+ J,) (3.53)

The rewards and shortcomings of this innovation
by Chen will be explored in the next sections where
generalized current equations are derived and in a
subsequent paper’” where an S-matrix formalism is
developed. The corresponding field formalism is also
being developed.?® The current formalism, however, is
enough to establish an integral equation for S-matrix
elements, providing a framework for discussing the
important question of boundary conditions in per-
turbation expansion.

4. THE CURRENT FORMALISM

In this section the representations for the off m.s.
current and Sop will be given in terms of Ry, and P
products of currents, respectively. These are the
analogs of the R- and ®-product representations,
respectively, in the field formalism. The physical
content of these equations gains heuristic support in
that they are formally satisfied by the Feynman-
Dyson § operator as will be proved. The question of
the finiteness of the theory and a rigorous perturbation
expansion are developed in a subsequent paper.” A
generalization in the manner of Chen® of the off m.s.
current and of the Sop equations is also carried out.

20 F. Rohrlich (to be published).
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Generalized Current Equation

The axioms of the theory imply as a strong equality
that the first derivative of the current is given by Eq.
2.9,

(1 — Byu)(idJy/daz) = Mu[Jy, J,). (4.1)

Now since the weak free-field formalism enables the
commutation of operator and coordinate differ-
entiation, (4.1) can be extended to the generalized
current equation, valid on F’

d o,
1—-B,)|————— -J).
[7!10( ”):l da, - da, »
(4.2)

This restriction is demanded by the use of an Abelian
product for the II,; which has been proved only
on §'.

The proof of (4.2) proceeds by induction. For
n = 1 we regain Eq. (4.1). Now assume it for n and it
will be proved for n + 1. We have, by assumption,

= Rp(Jo; Jy -+

n 5 [ 5,
9 1 =B |—2D
[I;I B, n+1):| 0a,, Ii:i!—il;o( ”)]6(11 -+ da,
s s,
L [H - B,c,nﬂ)} O Ry, T, (43)
k=0 0,4

But because the (1 — By 511), k=0, 1, , n) com-

mute on ' and are ldempotent Eq. (4 3) becomes
n+1 6n+1.]0 s n

[ P il | (R W)
i> =0 da, -+ - da,., =0

LI 6J
X RPl:JO; oo Ja(1 = Bm+1)—l_

=0 Ant1

..Jn],

4.4
Now with (4.1), Eq. (4.4) can be written

n+1 6n+1J
[ H (1 - Bij)il —
i>i=0 )

= [H (- Bk,nﬂ)](—i)

X L_ZORQ)(JM Jy

S [g (1 - Bk,nﬂ):\R};(Jo; J

where the last step follows by definition of the Rp
commutator. That the coefficient function

T1( = By | — 1
b ]

in (4.5) follows by (3.21), since all products of B, ,.,
(k=0,1,--,n) contained in this coefficient act on

' 6an+1

)

[y, J’I7,+1]RP t
k,n+1)]("‘i)[R})(J0§ Jyod)s Jn+1]Rp

(4.5)

Jn+l)5
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R(Jo3 J1 -+ + Joyr) Which has a II; in every variable
for every term. This concludes the proof of (4.2), since
Eq. (4.5) becomes

n+1 (5"+1J s
I: H (1- Bij):l PR Rp(Jos 1+ T npr)-
i>i=0 da, - da,

(4.6)

Further, since the Rp commutator and product are
equal on §’ (Appendix C), this also proves

| IL0 = B0 | 57 2 Rets a0
i>j=0 day - da,
4.7
The Generalized S,, Equation

The operator equation for the second derivative of
the Sop follows from the current equation (4.1) and
unitarity,

2492 .
(1= Byp)s 25 2 (1 — B@(ﬁ + Jz.ll)
da,da, da,
é HIZ[']I’ J2] + (1 - Bl2)J2J1
= P.(J1J). (4.8)

That this result generalizes on ' to

|:.H1(1 _Bij):|J1-~-néP+(J1"'Jn)a (4.9)
i>j=
for

g =ss 108

4.10
da, - - - da (4-10)

n

follows by induction.
For n = 2 we regain Eq. (4.8). Now assume it for
n and prove it for n 4+ 1. Thus we have by assumption

[ﬁ_[l(l - Bk.m)} 1o [ 10— Bz-»]qg...n

6an+1 i>j=1
s [H (1— Bk,m)} 0 pye ). (A1)
k=1 0a, 4
Now
8 [
[ Ia- B“)]Jl..."
éan+1 i>j=1
s [ i8
L [ II ¢ - Bm} LR
i>j=1 oa, .,
> [1]1(1 - Bm} (—dnadr o+ ) (412)
P> j=
and
" i6
{il—.[ (l - Bk,n+1):] o P+(Jl e Jn)
k=1 6an+1
a3 [H (- Bk,,.ﬂ)}
x EP+|:J1 oo (1 = Bypiy) foJy J} (4.13)

=1

6an+1
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but only on F' since we have commuted (1 — B; 1)
with the P ordering. By the current equation (4.1), we
obtain for (4.13)

i0

[g (1-— Bk,nﬂ)] Lp 1)

n+1

= [ﬁ a1 — Bkm+1):| éP+(J1 o [ Tl )

; l:kzl (1 - Bkm+1):| [P+(J1 T Jﬂ): Jn+1]RP * (414)

As in the proof of the generalized current equation,
the coeflicient in (4.14)

[H (1 = B | =1

by (3.21) since all products of the B ,, ., (k = 1,--,n)
act on [P, (J;---J,), Juy1lr, Which has II,; in every
variable for every term. With this fact plus Egs.
(4.12) and (4.14) we have

[ﬁ (1 - Bk,m)}[ﬂ (1 - Bﬁ)]
k=1 i>j=1
X (_J"+1J1...n + Jl""lH-l)
é [P+(J1 T Jn)9 Jn+1]Rp’ (415)
or

[ ITa- B)]J

i>j=1
= I:H a - Bk,n+1):‘Jn+1P+(J1 e Jn)

+ [P+(J1 o 'In)’ Jn+1]Rp: (416)

where the assumption for n of the equation to be
proved has been used in the last step. But by (3.21)
and (2.12),

[H (1 - Bk,n+1):|Jn+1P+(J1 e Jn)
- - Bn+1,1)J,,+1P+(J1 o), (417)

such that by the ordering theorem (3.30), Eq. (4.16)
becomes

n+l1
{1‘[ - B,-,-)]Jl e 2 P ),
1> j=
concluding the proof.
The formal solution represented by the Feynman-
Dyson (FD) S operator
Spp = (7, (4.18)

is a solution of (4.2) and (4.9). This follows since the
proofs of these expressions were inductive and were
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therefore consequences of the m =1 case. But for
m = 1 the proof has already been given by Pugh.®

In connection with Sgp, however, it is interesting
to see that a mapping relation previously derived for
fields?? has its analog for currents based on Spp.
This relation is (Appendix D),

T.(Jy I ) = Sk
J, = Syp(idSpp/da;) = Skp(j1Sep)sr (4.20)

jl = (5H/Oa1.

' ijFD)+s (4- 19)

for

and
4.21)

In addition the current has an R-product representa-
tion (Appendix D)

J=3

i—ol!

f dé, - dERGy: by ), (422)

for

H= f deh,. (4.23)

These formal expressions may have value as heuristic
aids to determine relations based on the P-ordering
concept which have more than just formal significance
when applied to currents.

Current Formalism According to Chen

The innovation of Chen discussed in Sec. 3,

(1 — BEN(idd,/da,) = I, J,]

and, equivalently,

(4.24)

(1 — By, = PN, (4.25)

can be extended on FINT in the same way as in the
cases for N = 1, Eqgs. (4.2) and (4.9). The proofs are
identical with those for Il,, and B,, except for their
replacement by I1t¥ and B2, so that only the results

will be presented here. The current Eq. (4.24),
generalizes to

, 6"J
1 — B } - J0
[zyo( da, - - - da,
= RDV(Jg; Jy -+ ) (4.26)
= R Jo; Iy T,), (427)

the RIM commutator and product, respectively. For
N =1 these results reduce to (4.2) and (4.7). The Sop
equation, (4.25), generalizes to

[ ITa- BE;-V])]JI...,, =

PN, -+ T, (4.28)

i>j=1

21 Reference 10, p. 745.
2 Reference 15, p. 1704.
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which reduces for N =1 to Eq. (4.9). The notation
and ordering theorems for these proofs was developed
in Sec. 3.

5. CONCLUSION

The identification of the IT- (TII!¥-) function algebra is
the most important technical contribution of this
work. This algebra is associative and Abelian on the
space F'(F¥T) < &' and its elements arise in con-
volution products with currents. The IT(II*¥) functions
permit multiplication with certain distributions such
as Dirac d functions and their derivatives in contrast
to § functions which do not have this property.
Coupled with the fact that its product with fields does
not in general exist, we find the II(II'V) functions
appearing as the natural elements for constructing
ordering theorems of currents. Thus its first major
application leads to the current representations of the
derivatives of the current and the Sop, respectively.
Specifically, these are the results (4.2) and (4.9) with
respect to the Il function and (4.27) and (4.28) with
respect to the I1L¥1 function.

Additional applications of the II-functional algebra
are developed in a subsequent paper.” Here the inte-
gral equation of Pugh! is derivable without ever
introducing the construct of an interpolating field.
The equations take on a particularly simple form,
however, enabling the identification of diagrams and
a successful solution to the boundary-condition
problems in perturbation expansion, as will be shown.
Thus in the current formalism an ordered product of
currents analogous to time ordering has been gener-
ated. It has the advantage, however, of rigorous rather
than just formal existence for the case of renormal-
izable interactions. For nonrenormalizable interactions
it is demonstrated’ that the perturbation expansion
exists term by term and is unique, but at the expense
of introducing additional parameters with increasing
order of expansion.
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APPENDIX A: CHAINS OF II;

The II,; and products formed from them are tem-
pered distributions which constitute an Abelian,
associative algebra on 5’ as defined in Eq. (3.15). In
this appendix the product will be demonstrated to be
associative and various multiplicative relations will
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be proved. Commutativity of the product is proved in
Appendix B,
For the product

H23H45H13H78H39

convolution convolution

| | [ |
= ITp3(x5x3; yzus)H45H13(X1u3§ J’1U3)H78H39(st92 Va)o)s
(A1)

associativity is independence of the order of integration
over u, and v, . This can be seen by explicitly carrying
out the convolution of any one product. Take, for
example,

I PRI =JH23(X2X3; Vatig) duglliz(xitis; y1ys), (A2)

or
g0y = KngmsewzxafAA(x2 — Yo) dusAp(x3 — uy)
X K:thuaoaclu;,AA(xl - }ﬁ)AR("s - y3) (A3)

Integrating by parts twice leaves only the volume term,
which is simply a convolution over a Dirac d function,

Mylly3 = K Ky 00D 42 — ¥2)
x f duglK oy A (s — 1]
X Ko\ 0zu,8a(x2 — y1)AR(Us — ys)
= KoK DD aa — ¥2) f dutgd(xs — us)

X KzlezlugAA(xl - yl)AR(u3 - ,Va)
= —Kngngmlemzwaezxa:aAA(xl - yl)

X A 4(xz — Y2)Ar(xs — ya). (A4)
Now since all convolution products appearing in the
chain are of this form, only the volume terms con-
tribute after integration by parts. But the volume
terms are all convolutions over Dirac d functions and
lead to unambiguous results independent of the order
of integration.

That the surface terms in (A4) vanish can be seen
in the following way. Explicitly, we have

H23H13

surface = —( lim — lim )

o 0
terms ug —> 0 U3 ——w

X KngxsﬂzgngA(x2 - x3)

X f dPuA p(xy — ug)

PN

X augoKa:xamlugAA(xl - yl)AR(u:} - y3)

J. G. WRAY

This term vanishes because the factors

) leezluaAA(xl — yDAR(Uz — y3)
= —KacleulxluayaA(xl - yl)A(uii - y3)
() Kg00 0,840 — YDAR(Us — ys)
= ’"Kacla(x(l) - ug)eulxleuayaA(xl - yl)A(u:s - y3),
(111) KmemluaAA(xl - yl)AR(uS - y3)
= _Ka:leﬂlxlugﬁgA(xl - .Vl)A(”s - ,V:z),
have no contribution in the lim because of their
1g®— + 0
respective 6 functions. The differential operator K
will not affect this limit since in each of the differ-
entiated terms the argument uj will still be bounded
above and below by )9, y3, respectively, by surviving
6 functions.

The multiplicative and linear relations between II,,,
II,,, and B,, have been summarized in Eqs. (2.12)
and (2.14). Products or chains of two or more II;
(i,j=1,--+,m;m > 2) have properties which are
generalizations of those for m = 2. The particular
chain
11 I

ayaztagag c

o,.. =1 (A5)

for {o;} some set of integers, has already been intro-
duced in the text. Since, as it is proved in Appendix
B, the II;; form an Abelian algebra on J',

[Hijs sz] =0,

ap- Am—-1%m

(A6)

the ordering of the II,; in (AS5) is immaterial. In
addition, (A6) enables the reduction of any chain to
products of factors of the form (A6). For example,
Ml = M1, = H12H1329 (A7)
where (A6) and (A5) have been used, respectively.
Thus, to characterize properties of an arbitrary chain,
it is sufficient to discuss only those of the form (AS).
Useful properties of chains to be proved on ' are
the following. A particular ordering of the integers

has been chosen for convenience and does not restrict
the generality of the results.

(i) Hf...m = (Hl"'m)complex = Hl-“m’
conjugate
(i) I2...
(i) T =(=)"Kg  Kg0p, 0,84 G — 1)

e AA(xm—l - ym—l)AR(xm - ym)!
(IV) H“Hll,m=nl

m=H1--~ma

s geromidy;

)
(Vi) Bunlzjm:HltamBzJ:O;
(Vll) BHHI...i...LHk...j...m=Hl...i...l
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and

The proofs are, in order:
() M., =TEllgy- -
= Il - - - I
by virtue of IT}; = II,;.

¥
(ii) Hf"-’m = (H12H23' v Hm—l,m)2
= MRI5, - 105,
= H121123 Tt Hm—l,m = Hl~--m9 (A9)
where use has been made of (A6) and II2, = II;.
(iii) To prove
Hl--- m = (_)szl e Ka:maxl---a:m
X AA(xl - }’1) e AA(xm—l - ym—-l)AR(xm - ym)
(A10)

will involve some calculation. First we have, explicitly
indicating the convolutions to be performed,

..., = H12H23H34 T Hm—l,m

=fH12(X1X2§ i) dusllog(usxs; yauis)

X dusTlay(usxy; yatg) dug -~ T,y 0

X (Um1Xm5 Vin-1Vm)- (A1)
But as we have seen [Eq. (A4)] after twice integrating
by parts, each of these integrals has only a volume-
term contribution, which is a convolution over a
Dirac 0 function. Effectively, the A;(x — u) of the
left member of any convolution product combines
with K, of the right member to yield —d(x — u).
Thus the result can be written down at once

Hl ceem =folK129wlmzAA(xl - yl)AR(x2 -_ ug)
X duzKungaeugzaAA(uZ - y2) . AR(x-'i - “3)
X dug- - du, K, K,0, .
X AA(um—l - ym—l)AR(xm - ym)
= (_)m_szle.’th{tlmz AA(XI - yl)
X 6(}(2 - u2) : du2Km36uzzaAA(u2 - y2)
X 0(xg — ug) dug - du,, ,

X Kmmeum—l-’bmAA(um—l — ym—l)AR(xm - ym)
= (_)mel e Kx,,,aa:l Ty

X AA(xl - yl) e AA(xm—l - ym—l)

*
H m—1,m

=1II,.... (A8)

m—1,m

AR(xm—ym)' Q.ED
(iv) To prove
Hijnl...,-...j...m = Hl---i---j---mnz‘a‘
=H1"'i"'7‘""m’ (A12)
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we first note that

Mo = T (Mg - - Ty )
= [II;;, Mo}y - - - Hm—l,m)
+ [, T )(Mgy - - Hm—l,m)
+ o (e s DLy, Wy m]
+ I0,... 11,
which by (A4) becomes

H“-HI...m=H1... H

mlliss (A13)
proving the first part of (AI2). The remaining
expression can be proved explicitly by calculation.
From (A10) we have

Hijnl...i...j...m
= K:c,-Ka:jemi:tjfdui du.’iAA(xi - ui)

X Aglx; — ) (=)"Ky, - Ky, oK

g Uy
X O iigeouye o Ba(iy — YD) - By
X (u;— ) Bylu; — y)  Bplxm — ym).
Once again, integration by parts twice in both 4-
variables u,, u, has only volume contributions over
the Dirac d functions é(u, — x;), 6(u; — x;), respec-
tively, such that

.'Ka:

m

H“HI,] m = (__)’mel et szei'?l"'xm
X AA(XI - yl) e A_~1(xm—l - ym—l)AR(xm - ym)
- Hl seem
concluding the proof.
(v) We have
Hll]mnl,,m
= H1'~'i-~-j-~'mHin:iiH1~"J'-~-z'~~-m= 0, (A14)
where the first step follows from (A12) and second
from (2.14).
(vi) This proof follows again from (A12), since
B,‘]'HI. e 7
(A15)
by (2.14). The remaining term can be proved in the
same way or just by the fact that

[By, ;... 1=[1-1,,~-1II,),1,...,]=0

(A16)
by (A13), such that (A15) implies

Oy...icc.s . mBy; = 0. (A17)

(vii) This result does not follow from the previous
relations so that a calculation must be made. Again
one of the three statements implies the others by
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(A16). To prove the first relation, we note that
Binl...i..-lHk---j-.-m

= BinqumHl--~i~~~lHk~-J'---m
by (Al12). But

B, = Ko Koo, f du, du [AGx, — u;)

X Ap(x; — ) — Ap(x; — u)A(x; — uy)]
X KmlKuiKqua:memluieujacmAA(xl - yl)
X Ap(u; = y)A4(u; = Y)AR(Xm — ym) =0,
(A19)
since integrating twice by parts leaves only the volume
terms which vanish by
Ku,'Ku;[A(xi - ui)AR(xJ' - ui)
= Ap(x; — u)A(x; — uy)] = 0. (A20)
Thus (A18) vanishes by (A19) and the relation is
proved. The proof here and that for (AlS5) are equiv-
alent to saying that the Fourier transform of [II; ... ]
vanishes whenever one of its variables is put on the
mass shell. That is, since the right set of variables in
the Fourier transform of B(x,x,; y;y.) contains one
m.s. d function in each term
F.T. [B(xyxz; y1y2)] = B(pipe; 0:145)
~ A(p1p2142)3(q7 + m®) + C(p1p24192)0(q3 + mz),
(A21)

the product (A18) can be viewed as taking the factor
F.T. [II,...,.] to the m.s. in one variable.

APPENDIX B: COMMUTATIVITY OF THE Ii;
In this appendix it will be proved that.

UL, Il =0 on F'(ij, k1), (BD)
or more precisely that
Joooouy, =0, L, k,i=1,---,m
(isjl#k)y forall f,...,€F;..., (B2

and &7,  ,, defined by Eq. (3.15).
If we let (4, J, k,[) run over (1,2, 3,4) for sim-
plicity, we must contend with the three cases
() (if) = (kD): [Ty, i), [y, Wy,
(1) i=k,j# 1 [H, Uy, [T, Hyl,
(iii) (ij) # (K1): {5, Tg,].

Four of these vanish directly as a result of carrying
out their products:

[Hm’ H12] = Hfz - Hfz =0,
[lea H21] = 1_[12I121 - H211_[12 =0—-0=0,
[lea H34] =0,

(B3)
(B4)
(B3)
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since there is no convolution between dissimilar indices
and

[Hm, Hsz] = H12H32 - H32H12
= Kx1K¢2621$2AA(x1 - 51)

X fanAR(XZ - 772)K.1:3Kn26mang

X A 4(x3 — ys)Ag(ns — &)
- KZaszemsszA(x:’; - 53)

X JdnzAR(x2 - nz)Kx1Kﬂ20w1ﬂ2

X A (%, — EDAR(e — &),
which upon twice integrating by parts becomes??

[H129 H32] = —KaclezK:cgemlzzema:cz
X [A4(x1 — EDA (x5 — £AR(X, — &2)
— A (% — EDA (X3 — E)AR(x2 — &5)]
=0. (B6)
The fifth combination [II,, II,;] does not vanish
as a consequence of carrying out the indicated prod-
ucts, but it is still the zero distribution on ¥, . as
defined by (B2). Explicitly we have
[H12 ’ H23]
= H12H23 - H23H12
= —leszKa:;;ozlzzngA(xl - gl)
X [A (x5 — &) — Ag(xy — E)JAR(X; — &)
= KlezszaemlwzzsAA(xl - El)
X Alxy — E)AR(xs — &) # 0. (B7)
However, [II,,, I1,,] is nil potent. This follows by

[le, H23]2 = [H12, Hza](HmHza - H23H12),

where

[y, Tyl = Ky Ko Ky s 000 f iy dn,

X A (%1 — A — 7)Ap(xy — &)
X K'llK'Izg'llﬂzAA(nl - fl)AR("h - 52) = 0>
(B8)

since twice integrating by parts in 7, leaves a vanishing
volume term by virtue of

K,,Ax; — 1) = 0.

In the same manner,

[11,s, st]nza =0, (B9)

%3 The product formed between any two indexes attached to differ-
ent [1,; is carried out explicitly in Appendix A. There it is demon-
strated that only volume terms contribute after twice integrating
by parts.
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proving
[Hm: Hza]2 = 0. (BIO)
To prove that [Il,,, [1,] vanishes on ;. ., we

first must introduce two subspaces of ¥ . The

distributions Il,ITy5, IIy0l, are idempotent. For
IT,,11,,, we have

(H12H23)2 = H12H23H12H23
= [le, st]lenzs + H23H12H12H23
= H23H12H23 = [Hz:;, H12]H23 + lenzanzs
= H12H23,
where use has been made of (B8), (BY9), and the
idempotency of Il,;. The proof for (IT4,I1,,)? = I3, 11,
goes through in the same manner.

The eigenvalue-zero eigenspaces of II,II,; and
"TI,,11,, can be constructed as follows

Gi.. {fiom(l = plly); all fy. . o€ Fro )

(B11)
and
Hioom= {1 =Tglly); all i, e F1. ),
(B12)
where
g1...pWllpllyy =0 forall g,...,,€9:...,. (B13)
and

hl"'mHZSIIlZ:O fOl’ an hl...mGJei_,.m. (B14)

These are necessarily subspaces of ¥, .

« SINCE,
for example, all vectors

froomQ = Iy e 1., (@llfi...,€F1...0)

(B15)
by construction. Further, we have
81... mllasllye
= gi...m(l — Il1lp) sl [by (B13)]

= gi... w([lgslly — H12H23H12)
= g1... m(Ilgllyp — [y, Mgl — H23H12H12)
=0 forall g..,.€6...,., (B16)

where the last step follows from (B8) and II,, idem-
potent. But this implies

S S K. (B17)
In the same manner it can be shown that

LS R (B18)
which, together with (B17) implies

G =% .. (B19)
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Now, with the aid of (B19), Eq. (B2) can be proved
for the last combination [Il,,, IT,;]. The proof is by
contradiction and starts with the assumption

fl-"m[Hm’HZS]#Os forsomc fl---me"rFll.'

ceme

(B20)
Equation (B20) can also be expressed as

fl e m[H125 H23]
=f1---m(H12H23 - H23H12)

=f1-~-m(H12H23 + [le’ Hza]nm - H12H23H12)
=f1---m(H12H23 - H12H23H23H12)
= fi.. mlliallgg(1 — Tpsl155) 5 0, (B21)

using (B8) and the idempotency of II,;. This in turn
implies that f;...,,II,,II,; has a nonvanishing com-
ponent in J¢;  for somef,...,, e F; ,, since

D fiowllplly=f1.. €T,
by construction,
(D) f1...n(1 — gyl e X1, ..,

by construction for f,  €F; .

But with (B19) this implies that f;..., I1,,11,; has a
nonvanishing component in §; for some f;..., €
F1... .- This is a contradiction, since

fl"'mH12H23(1 — H12H23) =0,

forall f,...,e5:..., (B22)
and (B23) implies
fl (R mH12H23(1 - H12H23) # 09
for some f;...,,€F;...,.. (B23)

Thus the.assumption (B20) is wrong and in fact

fl--~m[H125H23]=0 forall fl...me\tFi.

em

. (B24)
concluding the proof of (B2).

APPENDIX C: EQUALITY OF THE Rp
PRODUCT AND THE R;; COMMUTATOR
The Rp, product is defined by
I"Rp(Jo3 Iy "+ Jy)

= z HOl---n['”[JO’JI]’J2]"“’J7;] (Cl)
(lp-e?-r'}n)

and the Rp commutator by
"Rp(Jo; Iy -+ J,)
E[”'[J09J1]RP9J2]RPa".1Jn]Rp' (CZ)

The proof of their equivalence follows from the
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generating form for Rp, valid on '

iRp(Jo; J1* " Jpy1) = [Rp(Jo; J1 "+ o) Jnialgys

(C3)
which implies

Rp=Rp on F'. (C4

Equation (C3) is proved analogously to the proof
of R = R,

i"[Rp(Jo; J1- " T, Jn+1]RP

z HOL- v n[ ' [JO s Jl]’ J2]s T, Jn]’ Jn+1]RP
perm
L--n)
= E Holc--nz[' o> i) s Jj—1]9
perm i=0
---n)
X [JJ b Jﬂ+l]Rp]9 J]'+1]5 Ty, Jn]’
i"[RP(Jo§ Jyooo J”), Jn+1]RP
E 1P101« .. n{(HO,n+1 - Hl,n+l)
(lp-e-rfnn)

X [' t [‘IO’ Jn+1]9 J1]9 Y Jn]
+ -+ (Hl,n+1 - Hl+1,n+1)

X [ o [J(h Jl]s T, Jz]’ Jn+1]’ Jl+1]9 U ’J/n]
+-+ Hn,n+1[' te [J07J1]’ J2]a e ,J"],Jn+1]}.
(83
But, from the properties of the I, ..., (Appendix A),
we have
HOl oo n(Hl,n+l - Hl+1,n+1)
= HOI---nHl,l+1(HZ,n+1 - Hl+1,n+1)
= H01-~nHz,z+1HL,n+1(1 - Hl+1,n+l)
= Hy... nHl,l+1Hl,n+1(Hn+1,l+1 + Bii1,ner)
= H01 e nHl,n+1,l+15 (C6)
since
Hl,l+lnz,ﬂ+1Bn+l,z+1 =0 (C7)
Thus (C5) becomes, using (C6),
[inRP(Jo; oo d ) Jn+1]RP
z HOI 0 n+1, 1[ [J()s Jn-f-l]a Jl], T, Jn]
(llie?fnn)

+-+ Hl,n+1,l+1

X [ [-Io’ J1]s T Jz]’ J'n+1]’ Jz+1], e ,Jn]

+ 4+ Hn,n—H[' o [JO’JlL J2]: e ’J'n]r Jn+1]}
= z H01---n+1[' “[Jos 1) Je), o s il
perm
(L:--n+l)

= in+1Rp(Jo; iy AEER Jn+1)' QED (Cs)
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APPENDIX D: CURRENT-MAPPING THEOREM
IN FEYNMAN-DYSON THEORY

In this appendix it will be proved that the Feynman-
Dyson (FD) current satisfies the relations

Jo= 3 [@ORGA ) (O
- 20 % f dE, - dER(uhy, - - he), (D2)

and )
Ty ) = 8*G, - jmS)y, (D3)

with § = Spp, Eq. (4.18). The relevant ordering
theorems for T-ordered products to be used are

T:I:(jwl T .}xmhyl e hzln)
= jxlTi(ja:z o 'j:cmhm T hun)
+ [T:t(jmz te 'jz,,.hyl e hv,,)’ jz;]ﬁ’ (D4)
Tilay " Jauhsy " 1y,)
= :t(jwz ' ]mm y1 hyn)le
i []ml’ j:(]wg ! .]:cm V1 . hu,,)]Rs (DS)
o JmS)s
=jhUz " JuS)e £ (e *FuS) s 1l (D6)
= (jz e .]ms)d:,]l i Ul! (jz T 'jms)d:]r’ (D7)
for *
[(]2 o 'jms):t’jllr
i
= ST (DNl Juahe i), ol (©9)
and
[(./2 : 'jms)d:;jllr = [jl’ (]2 te 'ij):t]a- (D9)
In addition we will use
[j:z:’ T+(h1 T hn)]R
= 21 T+(h1 chiy, higrt  h)lss hilr
+‘>z_1T+(h1 U hz'—l s hi+1 e hi—l s hj+l T hn)
X [[.]a" hj]}h hz]R
'+[“'[jmshl]R7h2]R3"';hn]R' (DIO)

The R-product representation for J,, (DI), will be
proved first. We have for § = Sy,
165

a:c
—Z( 2 f (dOT,(jyhy -

24 Reference 15, p. 1704.

“h,). (D11)
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But by (DS) and (D10),

T+(jzh1' “h,)= T+(h1' “ hy)jy + Uz» T+(h1' “rh)lg,
T+Ozh1 “+hy)
= +(h1 o hp)j, + Z}T+(h1 ot hiy, hi+1 - hy)
X [gs hilg + ) > 1T+(h1 AR P MTRELY PI
i>j=
hj+1 e hn)[[jm’ hi]R’ h]-]R
+ o+ [ U Mlgs halg, o5 hle.  (D12)

The symmetry under the integral of (D11) in the
variables (&, - - - £,) allows (D12) to become

T (johy -+ hy)

Symme )y

in{l--+n .o

—> T (hl n)]:c +§ l' (n l)' +( l+1 n)
X[ [j:c’ hlgs helgs -+ hilg
g ! (n _ l)' Ti(hypr  h)R(jgs by v - hy),

(D13)

where the last step follows by definition of the R
product. Thus for Eq. (D11) we have

—i)"i'n!
n=oi=on! Il (n _ D!

X [@OT s BORG by ). (D14)
Assuming uniform convergence so that the summa-

tions in (D14) can be interchanged, we obtain

_ o) l 0 _i)n——l
o _golug (n — !
x f @O,y - h)RGas by - ),

SI, =5 2 f (dER(jzs by - - by),

or
1= 3 5 [@RG b ). QED.

With this result we can readily prove by induction
the mapping relation, (D3). It is true for n = 1 by
construction. If it is assumed for # it can be proved
for n + 1. We have, by (D4) with the arguments
replaced by (J; - - - J,

n+1)s
T+(J1 e Jn+1)

= J1T+(J2 o 'Jn+1) + [T+(J2' te Jn+1), AE

(D15)
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Now, using the implicit 7-product ordering theo-
rems, (D6) and (D7), we have for j Hermitian

J1T+(Jz U Jn+1)
= S*(j18):S*(z "+ Jnr1S)s
= (j1S*)_S5*(Jo ' * * jnraS)s
= {S*j1 — [S* i) 3Gz " JurrS)s
= S*(ji** JonaS)y — S*[(a "+ JraS)s s Jalr
— [S* LGz JaraSs
= §*(1" " Jwra®s — [S*(Ue JunaS)ss i)
= S*(r* JenaS)y — [Tz Jopa), i), (D16)

where the last step follows by assumption. Thus (D15)
becomes

T+(J1 e Jn+1)
= S*(j, - 'jn+1s)+ - [T+(J2 e Jn+1)’j1]r
+ [T+(J2 o Jn+1)’ J1]R- (D17)
Now if we take the 0, ...,,, projection of (D17), we
obtain
01---n+1T+(J1 e Jn+1)
= 01-«~n+1{s*(j1 o 'jn+1s)+ — [T+(J2' te Jn+l)’j1]r
+ [T+(J2 U Jn+1)! JI]R}‘ (D18)
But
61~-n+1T+(J1 e Jn+1) = 01~~n+1s*(j1 t 'jn+1s)+,
(D19)
since
6, -~n+1[T+(J2 e Jn+1)’ Jilg
n+1
= 61---n+1_§20i1T+(J2 Rl PNV R Jn+l) =0,
(D20)
by (3.8), and
6, --n+1[T+(J2.' o Jn+l)9j1]’r
n+l
=61-v-n+1'§2T+(J2."[JiajI]r'”Jn)=0’ (Dzl)
by
01 e 72+1[in ’ jzl]
=01 3 f @ORags by b, r
= brpafa 33 f @ORGas by b, Jonlm
= 0. (D22)
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In proving (D22) we have used the fact that
R(jz; by - h)=0fort, <t,---,t, which implies
[R(j:w hl T hl)sjy]R = 0’ fOI' ta: < ty' (D23)
Proving (D19) also proves the contention, since
both T, (Jy+ - Jpp) and S*(ji- - jpaS), are sym-
metric in (1 - - - n + 1). That is, for an arbitrary pro-
jection 6, ..., ., we have

00:1 ---a,,+1T+(J1 Tt J‘ﬂ+1) = 0:11- . -a,.+1S*(j1 o 'jn+ls)+
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and therefore that
Ty Jps) = S*Gr** *jnisS)s- QED. (D24)
From (D17) we also see that
[Tz T Jile = [T - Jpa)s alee (D25)
In addition, taking the Hermitian adjoint of (D24)

yields

T(Jy - Jp) =1 JuS*)S. (D26)

VOLUME 9, NUMBER 4 APRIL 1968

Current Formalism. II. The § Matrix in Perturbation Theory*t

J. G. Wrav?
Department of Physics, Syracuse University, Syracuse, New York

(Received 11 July 1967)

This work has accomplished in the context of asymptotic quantum field theory the following objectives.
(1) The S-matrix equations of Pugh [R. E. Pugh, Ann. Phys. (N.Y ) 23, 335 (1961)] and their general-
ization in the manner of Chen [T. W. Chen, Ann. Phys. (N.Y.) 42, 476 (1967)] are derived without
the aid of an interacting field. (2) A diagrammatic representation of these integrodifferential equations is
demonstrated. (3) The problem of boundary conditions for a self-interacting system is solved in perturba-
tion theory. This leads to a finite, divergence free, no cutoff expansion in the physical coupling constant.
For renormalizable interactions, the only additional parameter is the physical mass, whereas for non-
renormalizable interactions, uniqueness of the expansion requires additional parameters with increasing
order of expansion. (4) The success of the perturbation expansion serves as a posteriori justification of the
formulation in CF.L, [J. G. Wray, J. Math. Phys. 9, 537 (1968)] upon which the present work is built.
The 1T or “generalized step™ function and its associated algebra plays the principal technical role in facili-
tating this work. The crucial 1I-ordering relations and theorems developed in CF.I. are reviewed here.

1. INTRODUCTION

In the present work the general formalism of CF.I.
is used to generate the integro-differential equations
of Pugh,! facilitate a choice of boundary conditions
for finite, unique solutions in perturbation expansion,
and discuss the extension due to Chen? for non-
renormalizable interactions. A model based on a
single self-interacting Hermitian scalar field is worked
out in detail for the ¢3 interaction with reference to a
Lagrangian. The generalization to charge, spin, and
many-field problems is to be carried out in a later
work. The work is motivated by the belief that a
finite formulation of quantum field theory exists
which contains only physical parameters and no
divergences. The approach of Pugh! succeeded in

* Based in part on the Ph.D. thesis ‘‘The Current Formalism in
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ber, 1966, during which time the author was a NASA Trainee.
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yielding finite results to any order of perturbation
expansion for renormalizable interactions. However,
the work was not completely self-consistent, a
problem rectified in the present work. Chen? has
extended the ideas of Pugh to an operator formalism
which can support a perturbation expansion up to any
given order for nonrenormalizable interactions. How-
ever, by extrapolating to an S-matrix formalism, it is
demonstrated here that the number of parameters
increases with the order of expansion.

The assumptions and notation of the theory were
introduced in CF.I.3 We review the essential points of
this work in the present section. The assumptions are
the familiar ones, with the notable absence of an
asymptotic condition:

(i) Lorentz invariance.

(i) Strong unitarity.

(ili) Strong Bogoliubov causality.
This is because the interpolating field never appears
explicitly, since all expressions are written as func-
tionals of currents and higher derivatives of the S,,.

#J. G. Wray, J. Math. Phys. 9. 537 (1968), preceding article.
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Some technical points involving the mathematical
apparatus of the theory are the following.

All operators of the theory will be defined on the
Hilbert space H spanned by all polynomials of the
smeared free (in) field,

(1.1)

acting on a unique vacuum. The unitarily equivalent
space spanned by the out-fields define the S,

aout ( x) -

a™(x) = a(x) = a,,

S*ai(x)S. 1.2

The functional derivative is carried out with respect
to the in-fields and is a means of expressing an
operator with some variables extrapolated off the
mass shell (m.s.). That is, for F an operator on H
with the representation

21
F=Y = déy - dE fu(Er &) ag, o ag
n=0 N
1.3)
the functional derivative is
oF °°
oF f A8y fun(idy o £ ag o ag,
6(1:5 nvO n'

(1.4)
In fact, carrying on in this manner we see that

[__&F

Xt X)) ={ —— L5
fn( 1 'n) \6(1‘,,;1 . 6(11.”/0 ( )
for (- ), the vacuum expectation value. However,
it is necessary to discriminate between equations that
remain valid after functional differentiation and
those that do not. These are called strong and weak
equations, respectively, with the notation

= — strong equality,

li=

— weak equality.

For example, the free fields will be taken to satisfy a
weak free-field equation

(1.6)
(1.7)

This will enable the commutation of functional and
coordinate differentiation. For a more detailed
analysis of these points, the reader is referred to CF.I.
and the references noted there.

An additional technical aspect concerns the distri-
bution

I, =1,(xy; &) =

for .
K= —m

KmeezyAA(x - E)AR(.V - 77)5
(1.8)
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for
1, XO > yO
Bz'y = O(X -y = 0 0
0, x"<y.
The product formed between 11, at the same and dif-
ferent space-time points is associative and Abelian on
the space §' < &'. This space ' is defined in CF.L.
and, with the exception of m.s. test functions, exhausts
the space of left multipliers of the II,, products neces-
sary for this work. But since the II,, vanish on the
m.s., multiplicative relations of the II_, established on
F' are trivially satisfied on m.s. test functions. The
product law is a convolution such that, for example,

(1.9)

M, =I,1, = f dul,(xy; &)L (uz; n?). (1.10)

Chains of
I, =11

H]_...m

xia:j)a

= Il - - - 1T

(1.11)

m—1,m»s

are formed in the manner of Eq. (1.10) and we are
led to the P-ordering operation constructed in analogy
to the T-ordering operation with 8, — II;,

P(JyJdw= 2 I .0

perm
(L -m)

T (L12)

It is further proved in CF.L that the current and S,
derivatives have the current representations on §’,

i omJ
I1a- w)—"aéRp(Jo;Jl---Jm), (1.13)
i> = m
and
i"o™S

- B)S* ————— = P.(J1 " ),
i>j=1 1 m

[allm =1,2,---], (1.14)

for the Rp product given in analogy to the R product,
i"Rp(Jo; J1 "+ " I )

= Z HOI'”m[

perm
(1 m)

’ [J07 Jl]s J2]’ T Jm] (115)

That these equations have at least formal signifi-
cance follows from the demonstration that the
Feynman-Dyson algorithm is a formal solution. In
the present work the equations are solved in perturba-
tion expansion for renormalizable interactions with
only physical parameters and no divergent expressions.
Only self-interacting Hermitian scalar fields will be
considered.

It is noted that the advantage of P ordering over
T ordering lies in the ability of the II,; function to see
d functions with up to three time derivatives. This is
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adequate for the solution of renormalizable inter-
actions in perturbation expansion, but not for non-
renormalizable interactions. In an effort to present a
consistent formulation of nonrenormalizable inter-
actions, a generalization in the manner of Chen has
also been presented in CF.L

6m
TL0 - B8 = 2 R0 1y ),
(1.16)
and
10— BYYs* =02 2 Py, -1,
i> = 1t n

(1.17)
The RY1 and PN products are identical to the Rp
and P, products with

I, — 15,
while
H[N] H[N](xy; 5,7)
d = (K:va)NezyAﬁV_l)(x - E)A(Ig—l)(y _77)’ (118)
an

(AV—l)( ) - f d4p eipz
B Q)b Jeam (B + m)Y

The present work serves to demonstrate that at
least in perturbation expansion this framework is not
adequate. A finite unique result requires a number
of parameters that increases with the order of expan-
sion for nonrenormalizable interactions.

The next section deals with the formulation for
renormalizable interactions with a sample calculation
in ¢® theory. Nonrenormalizable interactions are
discussed in Sec. 3 with a summary in Sec. 4.

(1.19)

2. THE S-MATRIX THEORY OF RENORMAL-
IZABLE INTERACTIONS

The S-matrix formalism in asymptotic quantum
field theory for renormalizable interactions® and its
extension to nonrenormalizable interactions? are both
incomplete. The first because boundary conditions on
the integral equation were stated incorrectly, and the
latter because these boundary conditions were never
stated. In this section, boundary conditions will be
proposed for ¢* theories, with reference to the
interaction Lagrangian, for a self-interacting, scalar,
Hermitian field. A sample calculation is carried out
in perturbation expansion.

General Remarks

The S-matrix equation for the nth order m-point
function is given by*

(1—B,..
4 Reference 1, p. 342.

oo™ =AM

(2.1)

J. G. WRAY

where
Bl ceem
= Bl---m(xl' °e xm; yl e ym)
=K, meglewkwl T 0mkxk—lamkzk+l O
X Ag(xx — Vi) HA(xi ) (2.2)
i;e;;_
and
smsm (n)
o) = {7078 N7 (2.3)
\oay -+ 6a,/y
The product B, ... ,o{"..,, is formed by
Bi...wo\™ . . =B a0 (x x,,)
=fBl---m(x1"'xm§.V1"'ym)
X dy; -+ dyo™(y, (2.4)

The inhomogeneity of (2.1), A{”..,,, is completely
determined by the solutions of order / < n. The
general solution is given by

(n)

o =27 ™ (2.5)

where x{"..,, is a solution of the homogeneous
equation

(1= Bi...)n" . m=0.

The physical solution is determined by fixing x{"..,,
with appropriate boundary conditions.

It is interesting to note that the scattering amplitude
on the mass shell (or with one leg off the mass shell)

is completely contained in the homogeneous term,
(1)

(2.6)

11 ... This is a consequence of the fact that

L . B,... mlm.s.(m.s.—l) —1 2.7
which implies
(1 = B,.. m)w(n) mlm.s.(m.s -1

(n)
= X" mlm.s.(m.s.—l) =0,
or that
(n) - (n) (n)
Wy m’m.s‘(m.s.—l) = (4" + - ),m.s.(m.s.—l)

(n)

=/ (2.8)

where m.s. (m.s. — 1) indicates that all momenta (all
momenta but one) of the Fourier transform have been
restricted to the mass shell. This further implies that
for more than one leg off the m.s., the partition of
M., into AW + x{™.., is not in general a

: mlm.s.(m.s.—l)’

Wy
Lorentz-invariant separation. To make this statement
clear, let us look at the invariant homogeneous
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solutions in momentum space,

B
all p;*=—m?

WPy p) = {a(gmlpi)F(Pl T Pm) 29)

m
6(2p,-)P(p1 R ) I
i=1 all p;"#—m

where F(p, " * p)lan p2=—ms is any invariant tem-
pered distribution constructed from the m.s. momenta,
and P(p,--'p,) is a polynomial in the invariants
formed from the off-m.s. momenta. This polynomial
is further restricted by the constraint /; + /. < 4,
where /;, [, are the powers of any two moments in any
one term. Now for the particular case when all
momenta are off the m.s., the requirement that both
M., and ¥{™..,, be invariants would restrict x{"..,,
to its polynomial solutions. But by (2.8) this would
imply that the scattering amplitude on the m.s.
(m.s. — 1) would become a polynomial in momentum
space (point support in coordinate space), or vanish.
But only the first-order vertex and two-point function
can have these characteristics, respectively. Thus,
other than for these two exceptions, x{®..,, and
therefore A{")..,, cannot be invariants with all legs
off the m.s. The noninvariant solutions of the homoge-
neous equation, however, afford a large enough
class of functionals to support interactions. For some
legs on the m.s. the same discussion will hold with
respect to the invariant solutions of the homogeneous
equations for the B operator with some legs on the
m.s. When all or all but one of the legs are on the
m.s., the separation (2.5) becomes trivial by Eq. (2.8).
Thus the homogeneous solutions completely deter-
mine the m.s. scattering amplitudes and are determined
up to symmetric, invariant polynomials of restricted
degree (/; + I, < 4;for/;, I the power of any two mo-
menta in any one factor) by the requirement that

(n) (n) (n)
wl...m=ll...m+xl...m

be Lorentz invariant. It will be shown just how these
polynomials can be determined by physically moti-
vated boundary conditions in the next section.

In view of the above discussion, the requirement
placed on the nth-order vertex function®

(n) —
Bl...mwl...m = 0,
vertex

n>1,

leads to contradictions. This follows, since with (2.7)
we have

=", =0

(n)
By 01" s
vertex Im.s.(m.s.—1) n> 1,

vertex Im.s.(m.s.—1)

& Reference |, p. 345.
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or
> (n)
— n n
Wy...¢;m —zg W .om
vertex Im.s.(m.s.—1) n=0 vertexim.s.(m.s.—1)
_ (1)
= 8Wy. .oy >
vertex im.s.(m.s.—1)

a situation similar to that of the Lee model, where the
first-order approximation is taken to be the exact
vertex.

Diagrams in S-Matrix Theory

It is convenient at this point to generate A™._,,, the
inhomogeneity of the integral equation (2.1), directly
from the current formalism, CF.I. Let us define
A,..., asthe (1 — B,...,) projection of J; ...,,,

A =U =By ... MW (2.10)
for '
i™o"S
Jooopg=8*F—m—m——— 2.11
! éa, - - - da,, 211

The useful characteristic of the (1 — B, ...,,) operator
as far as perturbation theory is concerned is that it
projects out the terms linear in J, and its derivatives.
Thus A, ..., is entirely nonlinear in the currents and
current derivatives. This can be seen explicitly using
the identity®

Jycoom =+ i([0a)Vy - g1 om (2.12)
and the relation proved in Appendix A,

m
Bl---m= 1__[ Bij'

i>j=1

The product used in (2.13) is, for example,

(2.13)

Bygs = By3By3By;
=fd”1 duy duyBys(X;Xa; Uytig) Big(u; X35 Yitt)

X Bag(ustis; yays). (2.14)
The ordering of the pairs is immaterial, since we
have [B;;, B;] = zero distribution on

F'U,j k=1, ,myi#j,k # 1) (2.15)
since .
Bi:‘ =1~ (Hi:i + Hh’)
and the II,;; commute on F.
With (2.13), (I — B,...,,) can be expressed

(2.16)

(1—=By...,)=1—1] B;

i>j=1 =

=1—-B,p+ (1- H Bij)B12’

i>j=1
(ij)#1,2

8 F. Rohrlich, Perspective in Modern Physics, R. E. Marshak, Ed.
(Interscience Publishers Inc., New York, 1966).
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which upon further expansion yields
(1 - Bl PRI m)
=(1—Byp)+ (1 — Bi3)Bi,

m—1
+ (1 — By)ByBis + -+ + (1 — By) ]'——Jz: By;

+ (1 =By) [TBui+- -+ (1 —Bpyn) 1T B:;-
i=2

i>j=1
it m—1
(2.17)
Now,
Al veem

=1 =By Mieom

= {(1 — Byp) + (1 — BBy,
+ (0 — By)BppBis+ -+ (1 — Blm):i:[:Bli
+a _323)1-133”4_.“

+ (1= B 11 Bi,.}Jl..‘m, (2.18)

> j=1

which can be seen to be nonlinear in terms J;...,,
1 <1< m, and their derivatives. This follows, since

foranyr,s=1,---,m(r #5s),
s m i5
(1= B)y..n (1= B)TII (J,- = )J,s
j=1 a,
j#r,s

= ]._.[ (JJ + ﬁ) (1 - Brs)‘]rs
=1 da,

Q.
= Y
n

—i‘s—) PUJ) (219
a

J

is nonlinear in J,..., (! > 1) and their derivatives.
Explicitly, with (2.19), (2.18) can be written

. 0
Ao 211 (J]- + —I—)P(JlJz)
i=3 da;

2

m i
+ B, TI (J,- + 6’—) P(J,J5)

=2
i#1.3

3

o
St S|P +
da

a;

(Jj + 6’—5) P(JLJ,)

(414 50 Pt 4
da;

)

m m—2 .6
+ I B, (Jk + ’—)P(Jm_lJm),
i> = k=2 da,,

(2.20)

J. G. WRAY

proving the nonlinearity of A,...,, for all m. Thus in
perturbation theory, A{™. ., is determined by J{¥..,,
alt k <n, and the inhomogeneity of the integral
equation (2.1) is obtained by taking the vacuum
expectation value of A;...,,,

}'1"'m = <A1---m>05
which in nth order becomes

A= (A i, .21

Next it will be proved that A{™. ., can be partitioned
into terms labeled by the particular Feynman diagram
to which they contribute. We have

A= Amp
D {all diagrams}

(2.22)

for
AP = allterms € 4. ., that contribute only to

the diagram D. (2.23)

Equation (2.22) can in turn be used to define the
integral equation for w{™?2, ,

(1 —B,...)om2 = 1»>2 (2.24)

where w{® 2P, = solution corresponding to the dia-
gram D.
This is consistent with (2.1), since

wMP . (2.25)
D¢ {all diagrams)

(n) —
Wy, =

satisfies
(I =By... )0l =2m

by virtue of (2.22).

The piece of A{"..,, associated with one particular
Feynman graph, Y2, is identified in the formal
limit of unrenormalized Feynman-Dyson (FD) theory.
That is, A{®..,, partitions into terms that can be
identified by the diagram to which they contribute in
unrenormalized FD, a formal solution of Eq. (2.1).
Thus, A2 is uniquely defined for each diagram.
The uniqueness follows, since formally the only
difference between the renormalized and unrenormal-
ized solutions is a difference in boundary conditions.
But at least if the theory is restricted to a one-vertex
model, different boundary conditions, as it will be
shown, cannot change the topology or graph charac-
terization of A{®P,  and therefore of w(®?, . It
remains to be shown that

(i) The term A{®?”  characterizes the unrenormal-
ized Feynman graph D.

(ii) Boundary conditions cannot change the topology
already presented by AV 2, .

A typical term in the expression for A{™.., given
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by the vacuum of Eq. (2.20) is of the form

|3<;1§[1 (J,- 420

£l

(n)

1+ 3,
+ BHM\I‘[ (J + la)JkJ,>

! (2.26)

with B some c-number coefficient composed of a
suitable product of B,’s. Further, the vacuum
products of (2.26),

(n)

(I oot ),

for example, can be expressed as a linear combination
of factors, at least bilinear in ‘*8, defined as

5@)s = [ T —"15-}8, @27)
selag) Oay
§=S8 or S% (2.28)
That is,
/ m id (n)
J JJ
(I 50) ),
i*lk
max
— z Z C{ai}<6(a1)86(az)8 e é(a')8>g"), (229)
r=2 sets {a;}
for the sets, {«;}, made up from theintegers 1, - - - , m.

For example, in the simplest case, m = 2, we have
i0S

(n)
J (n) _/S*_ *I(SS\
(Jad 2o 5a, N A
/—165* 165\(’”

- \\ 5(11 (3(12/0

which is of the form of Eq. (2.29). Expanding § in
terms of point functions, the typical term of (2.29)
becomes

(2.30)

<6(11)8 Ce 6(1k)8>0
© (_i)E’;Tj
= > ———(x;" dx,,)
1,79 =1 rl! r2! M rk!
X (dys - dy,) - (dzy - dr,)
X [S(xl U xrlxrrf-l e xr1+a1)
X SV YrYrgia " Vrprag)
X $(zy" " Zp g1t rk+ak)](m
x <:aml ... am']: ay, allrl. ceea, v azf,c:>0 ,

(2.31)
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where
(X * Xp), for §=3S8
s(xy 0 xp) =
(—=)YPw*(xy- -+ x;), for 8= S*
(2.32)

The point functions s(x; - - - xz) appearing in (2.31)
are all of order / < n, since k > 2 (k = number of
point functions appearing in any one product). Thus,
if we assume that a diagram representation exists for
all point functions of order / < n, then (2.31) gives
us a natural program for labeling each of its terms
by the topology represented by one and only one
graph. The vacuum products of (2.31),

Gag, - a, :a

az,k :>0 ’
reduce to all possible products of A (x; — y,),
which saturate the internal (integration) variables
(v x. )ttt yry) 0 (20 0 - 2,) and connect only
varlables of different sets. The topology of nth order
is to be identified by associating a line with each
A, (x; — ;). This serves to connect two inserted
parts represented by a diagram from each of two-
point functions s(x; - -x,;) of (2.31). Thus, since
each product of A,(x; — y,) will represent a unique
pairing of all internal variables between different sets,
and all diagrams for s(x, - - - x,), (/ < n) are known
by assumption, this prescription does assign a unique
diagram label to each term of (2.31). Now by repeating
this analysis for all of A{".. . one can group those
terms labeled by the same diagram. This grouping then
defines A2 as the collection of all terms of A",
labeled by the same diagram D,

To prove that this topology has physical content,
it must be demonstrated first that apart from intro-
ducing new vertexes, the homogeneous solutions
cannot alter the topology as defined. This will be
adequate, since we are interested here only in single-
vertex models. As explained earlier, A2, can be
used to define w{™?, through the integral equation

v1 au,.z' ) Gyt

(1 - Bl e m)wy?)-l-)m = Aiyf)'prrw
with the general solution
WMl = AMP 4 WD (2.33)

As previously discussed, ™2, is first of all the
Lorentz-invariant completion of A{™” . But from
(2.26) the structure of A{*2_ is seen to be that of
manifestly invariant vacuum products,

s

(n)

with manifestly noninvariant c-number operator
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coefficients represented by BII,;. The role of x{"2,, is
therefore seen to be that of adding appropriate cor-
rections to these coefficients. Thus, up to invariant
polynomial solutions of the homogeneous equation,
42 will necessarily have the same topology as
A(mP . since the topology as it has been defined is all
contained in the invariant factors

m . {n)
/II(Jj+—@)JJk -
AN ARV

The polynomial terms of y{"2,, are then to be fixed
by boundary conditions in such a way that they

cannot introduce new topological structures in the.

form of additional vertexes. Thus the homogeneous
term of (2.33) is so restricted that its diagram topology
is the same as A2 . uniquely determining the
topology of w{™2, to be that of A{V",.

That the diagram topology defined for A{?”,, is in
fact a physical partition of A{"..,, follows from its
formal identification with FD in the limit of the un-
renormalized solutions. The integral corresponding
to any nth order m-point graph D in unrenormalized
FD can be found to correspond to AP, in the
following way. Each term of A{*?, is determined up
to operator coefficients BIl,, (symbolically) by a
particular graph with inserted diagrams of order
t < n,connected by lines associated with A, functions.
But up to coefficients of appropriate 0-function
products, this same graph can be generated in the
unrenormalized FD integral by judicious substitutions,

Ay(xy — xg) — ezlmzA+(xl — Xy) + 022x1A+(X2 - xp)

for those lines not contained in the inserted parts of
the graph of the A{”P  term. Now since x{"? is
equipped to manipulate these coefficients and since it
has already been proved that the unrenormalized FD
is a formal solution of the equations (CF.L), it is
concluded that

formally)
(mp (n)D
1---m > Wy .0

(FD)

m*

when the boundary conditions appropriate to unre-
normalized FD are applied.

This section has presented a program for generating
exact S-matrix equations directly from the current
formalism. If one resorts to a perturbation expansion,
we have demonstrated a diagrammatic approach to the
effect that in the limit of unrenormalized FD it re-
produces Feynman diagrams. It has also been shown
that boundary conditions play a crucial role in
determining the topology by defining the vertex
function (or functions) of the theory. In the next
section physically motivated boundary conditions
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will be established that lead to the anticipated result
of a two-parameter solution to renormalizable
theories in perturbation expansion.

Boundary Conditions in ¢ Theory

The problem of establishing physically motivated
boundary conditions (b.c.) in a perturbation expansion
that leads to a unique solution for the S matrix in
terms of the two parameters,

m = renormalized mass,
g = renormalized coupling constant,

has been discussed to some extent in the last two
sections. It has been shown that the inhomogeneity
of the integral equation A{™ _ is not in general
Lorentz invariant such that the requirements:

(i) Lorentz invariance,

(i)) symmetry of w, ., under permutation of

its arguments,

determine w{® _ up to invariant symmetric x" .
terms. These are symmetric, invariant polynomials of
the transform momenta p, - - - p,, with the restriction
that

L+ 1, <4, (2.34)

for /;, I, the exponents of any two momenta in any one
factor. Thus the role of b.c.’s is that of fixing these
polynomials.

A first attempt might be to choose the b.c.

lim @"(py - pn)—0 forallmwith n > 1.

T (2.35)
This uniquely determines all solutions, since when a
#(p1 - " - p,) is determined such that (2.35) holds, only
polynomials also satisfying (2.35) can be added. But
there are no polynomials satisfying (2.35), so that
the solution is unique. However, there are rather
serious problems with this solution. Supposedly,
there are at least two phenomenologically determined
parameters m and g imbedded in the solution. But
the b.c. (2.35) has completely determined the theory.
There is no arbitrariness left with which to match the
parameters with measurements. That is, it is impossible
at this point, for example, to require that @{}) , have
a zero on the mass shell (m.s.), to fix the mass at the
physical value, or to demand that the form factor at
some value of its momenta equal the coupling con-
stant, fixing that parameter. Beyond these contradic-
tions it becomes apparent after computation to just
2nd order that the b.c. (2.35) can be satisfied only in
a formal sense, since divergent terms necessarily
appear. Thus it is clear that not just any b.c. can be
applied. In fact, the requirements of the theory, once
the first Born term is specified, appear to determine
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uniquely the boundary conditions of a consistent
theory.

The set of boundary conditions leading to finite
results for ¢* theory will now be developed. For the
2-point function, the b.c. (m = observed mass),

@' (pypy)

=0, (2.36)
—p*=m’ (P% + mz)

fixes all polynomials and introduces the physical mass
shell by requiring that the 2-point function have a
2nd-order zero at p? = —m? It is a unique result,
since there are no polynomials satisfying (2.34) that
can have 2nd-order zeros in p2. It is noted that a first-
order zero would not have led to unique results, since
symmetric invariant polynomials can satisfy (2.34)
and have a first-order zero in p% However, Eq. (2.36)
is equivalent to the statement

B0, = 0, for all n, 2.37)

since By, on any functional that approaches the mass
shell as (p? + m?*? is always zero. But it is shown in
Appendix B that (2.37) is a consequence of the
stability of the vacuum and single-particle states.
Thus the 2-point function is completely determined
by the theory and no additional constraint is necessary.

For the 3-point function, the situation is slightly
more complicated. This is because the coupling
constant is defined in terms of the proper vertex only,
necessitating an identification of proper diagrams
before b.c.’s can be applied. The identification of
diagrams was discussed in the last section. Improper
diagrams are simply connected, while proper diagrams
are those remaining.” Thus, defining the proper part
of @2 and A7), the Fourier transforms of {7} and

123 123 °

Al? we have

132

@3 (p1paps) = proper part of @™ (pyp,ps), (2.38)

A2 (p1p2ps) = proper part of A”(p,pops),  (2.39)
satisfying the equation
(1r— 3123)65%)(1711’2173) = Z(111)(1’11’2173)- (2.40)

The coupling constant is defined by the exact proper
vertex function at a particular value of its variables.
The point (in phase space) at which the variables
are fixed is arbitrary, and we choose the definition

3
2 2 2E 0 (zpl)
D1, =Dy =—"m =1
p3 =0

Of course, since @ p(p;p,p;) is symmetric, the asym-
metry between I, 2, and 3 in (2.41) is only apparent.

@ p(P1P2Ps) g (24D
£;2=1)2 =——m

=0

7J. M. Jauch and F. Rohrlich, Theory of Photons and Electrons
(Addison-Wesley Publ. Co., Inc., Reading, Mass., 1959), p. 206.
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Now in perturbation theory with

@ p(P1D2P3) = E_:og nd’({)”(Plpzl’a), (2.42)
and B
3
g6 (p1papy) = gé(__lp,-), (2.43)

Eq. (2.41) implies the boundary condition

(iii) ligmoca‘,?’(plpzpa)|mz=p22=_m=_>0, n>1. (2.44)
Pz

Thus with symmetry in (p,p,ps), we have the require-

ment that &%’ (p, p.ps) vanishes whenever two legs go

on the mass shell and the square of the third goes to

zero.

However, (2.44) does not uniquely specify
@' (p1peps), since there exists invariant symmetric
polynomials which satisfy both constraints (2.34)
and (2.44). So the question is raised: Is there any
additional condition that will fix these polynomials
and still introduce no new parameters? The answer is
in the affirmative and is given by the high-energy
bound?®

~(n)
(iv) lim 2F (p112’2p3)___)0’

—pf0 =Py

all i. (2.45)

Additional polynomials are forced to be constants
by the high-energy condition (2.45) and the constants
are forced to vanish by the zero condition of (2.44).
Terms linear in a particular momentum are converted
to bilinear ones, e.g., by
oEi_P)
P1'P2( P>_P1’(P1+P3)=—P%—P1'P3,

and therefore do not satisfy the high-energy limit
2.44), ie.,

lim PPz 450,
-m’o =Py

Improper vertex functions are completely deter-
mined by requiring that the simply connected parts of

8 This point was further illuminated by Wilner, who suggested
that Eq. (2.45) might actually follow from the LSZ theorem on the
vertex. That this is indeed so can be seen by the following. The LSZ
theorem says that

. w(pypeps)
lim ———5 I =0
—paz—oo (=PI [p_pel e
for a ¢? interaction. This determines y up to terms that are non-
vanishing on the p; and p, mass shells and independent of pg, i.e.,

x~A+ (Pt + m)HB + (p + m)C.
But since ¥ must be symmetric, we must have
3
r~A+ BZI(PE + m?),
&
which satisfies the LSZ theorem for B = 0. Thus ¥ ~ A, which is

determined to be 4 = 0 by (2.44), which satisfies the requirement of
self-consistency for the definition of the coupling constant.
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an improper vertex @) . ...(p,p.p;) must satisfy
the boundary conditions of the proper diagrams to
which they correspond. Uniqueness is guaranteed,
since additional polynomials must reflect the boundary
conditions satisfied by the simply connected proper
parts. But we have already seen that these conditions
completely determine all polynomials.

For the m-point function, m > 4, the only boundary
condition which introduces no new parameters into
the theory, yet fixes the polynomial terms in ;... ,,,
is the one chosen by Pugh,’

%

lign @™ (py - pn)—0, foralln and
e m> 4. (2.46)

That this condition and indeed all high-energy
boundary conditions are compatible with existence
requirements is best expressed in the language of
subtractions. Equation (2.46) is simply the statement
that no subtractions are needed in primitive m-point
diagrams for m > 4 to all orders in ¢?* theory. Like-
wise, (2.45) is the statement that one subtraction is
needed to all orders for the primitive diagram of the
vertex in ¢® theory. This subtraction is necessitated not
by existence requirements, however, but rather by the
introduction of a coupling constant and the associated
self-consistency requirements or boundary conditions.
The two-point function satisfies Eq. (2.36), which is
equivalent to the requirement of two subtractions,
one more than is necessary for existence.

Thus, in summary, the constraints sufficient for
a two-parameter solution of the integral equation in
¢® theory are:

(1) Lorentz invariance.

(i) Symmetry of w{™ under permutation of its

arguments.

(iii) lizmoé‘ﬂ’(hpzpa)lpﬁ:p;:_mﬂ =0, (n>1)
p3 =
and

3
&(pipeps) = g6 ( 'lepi) :

~(n)
Gv) tim QEPPR) oy
—pi" ™o — Dy
(v) lizm & (py - p)—>0 for m>4, alln,
—p; o

An example is worked out in the next section in order
to demonstrate the efficacy of this program.

Calculation in ¢® Theory

To demonstrate the techniques, the contribution
to the 3rd-order vertex theory represented by the

diagram D,

D

(2.47)
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will be derived. Starting from current-operator
expressions, the integro-differential equation for the
3-point function will be obtained. In perturbation
expansion the contribution to the 3rd-order graph D
will be identified. Then a unique solution is found by
applying the boundary conditions. The homogeneous
solution will be determined first as the Lorentz
invariant completion of the inhomogeneous term and
second by the boundary conditions applicable to an
improper vertex function as discussed in the last
section.

The equation containing the graph D is the 3-point
equation in 3rd order,

a1 - B123)w{3;), = }‘{g:); (2.48)

Before perturbation expansion, the inhomogeneity
can be represented by the vacuum of the operator
reduction

Ags=(1 — Bygs)J 123

3
- (1 —_HIBH)JI%
i>j=

3
= {-H1(1 - B+ zl [Bi2o(1 — Byy)]}J10s.
i>j= cycle
(2.49)

(123)

But from (1.14) we have

3

H (1 - Bij)J123 = P(J1J2J3),

i>j=1

(2.50)
and
Bio(1 — Byg)Jyp3 = By(1 — By)(J; + ia/éal)‘]%
= Biy(J; + id/da)(1 — By3)J o,
= Byy(J, + id/da)P(J.J,),
such that (2.49) becomes
Ay = P(JJJ3) + Z [Bi(J; + i0/0ay)P(JyJ35)].

cycle

(2.51)

(123) (2.52)
Now the inhomogeneity of (2.48) is simply
}*1(:2% = <A123 (()3) = < P(J1J2J3)
. \(3)
+ 3 BulUs + za/aaoP(Jsz} 253
cycle / 0

(123)

To evaluate (2.53) the solutions of order less than
three must first be computed. The first-order assump-
tion determines the vertex and must be a solution of
the homogeneous equation, since the inhomogeneity
necessarily vanishes. To establish the ¢® theory, we
assume in coordinate space

w(l)(xlxzxs) = —0(X; — xp)0(xy — X3), (2.54)
and

(1 x) 123 =0, (2.55)
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such that

(2.56)

The second-order solutions are uniquely determined
by the theory:

(i) 2-point function:

@ P(x1x3) = (PU I ) (2.57)

— KK, f (A (5 — x| g, (2.58)
for
p(i®) = (i/167°)0(u* — 4m®)(u* — m®)~*
x [(u* — 4md[E;  (2.59)
(ii) 4-point function:

w(2)(x1 T Xy)

= }i 2 [6(x; — x2)0(x3 — x)A (%, — x3)];  (2.60)
pairs
(iii) /-point function:
0Py %) |1p24 = 0. (2.61)

Using (2.56) the factors containing three currents
in (2.53) can be seen to contribute only to the triangle
graph, Using the rules for defining the diagram
topology of a particular factor, we obtain

<J1J2J3>(3) = §( a1 a2 as Do
= (—)°AL(0 — x2)A, (x, — x3)A (x; — x3)

€ (2.62)

Thus the contributions to the graph D are all con-
tained in the factors of (2.53) with only two currents.
Representing the contributions to this graph by AP,

we have
3)
<21[B P(JzJa)]> .

The typical vacuum product we must look at is, for
example,

(2.63)

/ (3) /15 i8S \(3)
Xiog = JoJ 5 S*
G, = Gal ™ 50> o0,

"<aal[(_ et _}>;3)

Vi [as*‘z’ 38 8S*W 55\
. (264
\5‘11 502 :'/o ( )

Now, from (2.54)-(2.61) and the definition of S, we

X123

day da, da,
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have
S(l) —_ ;'_'ifdg:ag:, (2.65)
~Nd .
g - (=071 dE d
41 2)
X Z [6(5; — &2)0(&5 — &)
cycle
(1--.4)
X Ac(fl - 53)]:[151 e afd:
+ 3= f 48, dé,o(E,8) anay,:
=fd§1 dfz[%iAc(El - 52):‘1?1“22:
— %w(Z)(Elfg):aﬁaht], (2.66)
88W)da, = —}ial:, (2.67)
=0
A
882 /éa,, =fd§[%iAc(x1 — &):a,ar — 0P(x,8)a,
(2.68)
625(1)/60115012 — _ia(xl — xz)awl’ (269)
6°S®da, ba,, = iA(x; — X;):a,,a,,: + 3i0(x; — x5)

X J dEA(xy — £):at: — 0®(xpxy). (2.70)

Substituting these results into (2.64) yields

Koyopsy = l<{ | (D80 = e, — Fid(e = x)
X f dEA (x, — E):a?::i(—%i):aia:
+ dita [zAc(xl — X3)idy,

+ i0(x; — xo) f dEA(x, — 5):a§;]}>0.

(2.71)
The vacuum products of (2.71) then reduce to

Xy, = i[Ac(xl — DAL — X9 — x3)
+ 8(x, — x3) f dEA(x, — ENL(E — xg}
+ i[Ac(xl - x3)A+(x2 — xl)A+(x2 — X3)

+ 6(x; — xp) f dEA (x, — E)AR (x, — 5)}

(2.72)

But only the 2nd and 4th terms have the topology of
the graph D, (2.47), the remainder having that of the
triangle graph, (2.62). If these two terms are now
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labeled X2, the equation for the diagram D becomes,
using (2.53), (2.64), and (2.72),

f (1 - B123)wgi£2x3) = Miiﬁ,s), (2-73)
or
AL =3 {BullyuXP epry + Mee X0 nepl} (274

cycle
(123)

= iz B12{H23fd£Ac(x1 — &)[0(x; — x3)

cycle
(123)

X A-zi-(f — Xx3) + 6("1 - xs)A (xp — 8]
+ IO, f dEA (%, ~ B0, — o)

x AZ(E — x3) + 8(x, — x)AL(x; — 5)1} @.75)
Let us define the quantity
Yooy = BuaTlead(, — %) f dED(x, — HAL(E — x7)
= BIZH236(x1 — X,)
2
éi 2 l)(,t )
xf # (m?* — p®)

where p(u?) is given by (2.59). But (2.76) can be
decomposed further by the separation,

A(xy = x| ), (276)

Y(:rla:g:ra)
= 312{6("1 — xo)Ipg + My, 6(x; — xz)]}

Jd/‘ ’i(&—)—Ai(xz — X3 I # (277
(m® — )

= 6(}(1 - xZ)K:cg a:za:;»,

fd”( p(/t) A

iy )3 +(x2 — X3 ) lu2) + X{wlmz-’ﬂa)’

2.78)
for

l}zlzzza) = Byp[Ilz3, 6(x; — Xxp)]
2
de/‘2z—g(ﬁ)—zA+(xz — X3 | p®). (2.79)

m° — p’)

The term separated off in (2.78), ¥{, ..., » is shown to
be a solution of the homogeneous equation at the end
of this section. The first term of (2.78) has absorbed
the multiplier B, since it is an eigenvalue-one eigen-
solution of By,. The factor A (x, — &)AR(xs — &)
of Il,; has been absorbed under the integral over u?
as an increase in the power of the denominator
(m? — p?).

Proceeding in the same manner, it can be shown
that

2L ey = Billped(x; — xp) f dEA(x, — EYAL(x, — &)
(2.80)
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is also a solution of the (1 — Bj,;) homogeneous
equation such that with (2.80), (2.78), and (2.76) Eq.
(2.75) becomes

oo =i 3 {6(x1 — x)K Koy
cycle
(123)
()
delf (m—f:ﬁ [BayD s (X5 — X3 | 1)
F Bt = | )+ 2]y 28D
or
Aglmzma) =i z {6(x1 - x2)Kw2Kzg
cycle
(123)
fd;u' _P(—lu)_ Ac(xZ - X3 , /"2) + X(Ia{fmzwz)} ’
(m* — p)
(2.82)
for
l(aglla:zxs) X(xlz;xa) + X(mlxgzz) + X(wlaczma) + X(zlngg)

(2.83)

Thus 4{) ,,..) is partitioned into an invariant term
plus a solution of the homogeneous equation Xlrrzpza) -
The particular solution of (2.73),

(3)D (3)D
w(zlxzxg) l(mlzzms) + X(zxaczzs)’

(2.84)
is obtained from the general solution with b.c.’s to
determine % z,s,) Up to mvarlant symmetrlc solutions
of the homogeneous equation, y . .,

2 X(IzIfa:zxa) + X(mlzgxa)a (285)

cycle
(123)

such that with (2.82) and (2.84),

x(xm:za}a)

wg)lgzws) = lczcle{é(xl - xZ)szsz
1z3)
2
% | du? ) A(xy — X 2}+IV )
f M (m2 ___[u2)3 ( 2 3llu') Xlzyzges)

(2.86)

Since the graph D is an improper vertex part, the
invariant homogeneous solution y(; ., is to be fixed
by requiring that w2 satisfy the b.c.’s implied by
its simply connected factors. Thus, since this graph
factors into a Ist-order vertex and a 2nd-order self-
energy part, we have the b.c. in momentum space

lim  &"(p1paps)Ai(ps | m*)3™ (pspy)

—173 —’m

= C lim (5( p,)
—pg*—m? gl p3+

= C lim 6(zp,) 5(ps + PP + m),

—1’3 —-m i=1

. (p§ + m*?8(p; + py)

(2.87)



CURRENT FORMALISM. II. § MATRIX IN PERTURBATION THEORY

for C a factor independent of p. But the first term of
(2.86) does not satisfy this b.c., since it — 0 as
(p? + m®? when p} — —m?, thus demanding the fol-
lowing polynomial for 7" pyny > WheETE

FT[X(mlzgma)] = Z(IYIPZI’B) ° (2‘88)
The Fourier transform of (2.86) yields

3

e AL (zpl)m +m?

( )
jd ? P = c(pl l M ) + x(mpwa)’

(2.89)
which can be written
122)1132273)
3 3 2 9
=2 {5(;17,-)(191 + m’)
2
X fd/f (—mzL(f——Lz)a (p) + 1* + m* — w)ALp,| Hz)}
+ Z(IIXﬂf'Ds)
= Z {6(;}%) (P7 + m?)
w [t —PEL_ o | + 70, (2.90)
/.t (m2 _ 2)2 c(pl lu’ ) + X(Du?sz) ’ .
for
Z?;)mzlls) = X(lezna)
3
+ 3 {o(2p) 0t + 0 [t L)
1= i=

(2.91)

The additional contribution to the homogeneous
term (2.91) is just an invariant polynomial solution.
The remaining invariant part of (2.90) now satisfies
the b.c. (2.87) and we have

Ztopeny = 0- (2.92)

The solution, uniquely determined by the b.c. is,
therefore,

3
~(3)D

3
D(p1pang) = lgl{é(glpi) (le + m®)
X d[u2 —p(‘u..z)_
(m2 — #2)2
It remains only to prove the contention made

earlier that the term separated off in (2.78), %, 4.0 -
is a solution of the homogeneous equation,

(1 - B123)X(Iz1:czxg) = 0

This follows since the factor B,[Il,;, 0(x; — x,)] has

AP, | /f)}. (2.93)
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only point support in time, with the number of time
derivatives satisfying the familiar constraint, n, +
n; <4 (,j=1,2,3),for n,, ;, the exponents of any
two time derivatives in any one term. This can be
seen as follows. The B, can be dropped, since it
commutes with the II,, and reduces to the unit
multiplier on 8(x; — x,). Thus we have for f, , , the
factors to the right of the commutator in (2.79),

[H23, 6()61 - xz)]f:cla:gaca
= 1_[2:36(‘)(:1 - x2)fxla:zxs -
= K, K, 0

x f dEy dEN (% — ENAR(Xs — E)OCYy — €D fareats
— 0(x; — x)K,,K,,.0

&3~ X2¥3

defz dfaAA(xz - 52)AR(x3 - S3)favl§2§s‘

0(x; — xx)psf, 12323

Now commute the K, K, with the §,, to form the

factors

[st, 5(3‘1 - x2)]fm1:t2w3

= szzaa(xl - x2)fm1m2m3 -
+ [Ke, Koy s Oy

X fdfl d&A J(xs — E)AR(xs — E)0(x; — &) fortats
- 6(X1 - xz)[szKxaa exzwa]
x f A2y dEA (X — EDAR(Xs — E0)fonsase-

(3(X1 — xz)emzngxlzzwa

But these last two terms are homogeneous solutions
of both (1 — By,) and (1 — By;) on F', e.g.,

Bl2[Ka:2 Ka:3 ’ emzxs]
x f A&, dEA (%2 — EDAR(Xs — EOCX — £ forsars

= Bl2{H236(x1 — X)) — emzwaa(xl - x2)}lewzz3
= {H23Bl26(x1 — X3) — Byy0(x; — x2)6w2z3}fmlzzxa
= [Kngxa’ 02}23:3]

x f dEy dEA (%0 — EDDR(Xs — EO(X — £ fapssea-

Further, we have
(1 - B23)[K Ka:a 630 ”3] =0,

since [K;, K, , 0,,,,] only has point support in time and
satisfies the derivative constraint, 1, + 73 < 4. These
terms are, however, also homogeneous solutions of
(1 — By3), since point support in (x§ — xJ) is guaran-
teed by their being homogeneous solutions of (1 — B,,)
and (1 — Byy). The derivative requirement is satisfied
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since there are no derivatives in x9, while the deriva-
tives in x3 already satisfy the constraint by virtue of
its being a homogeneous solution of (I — B,;). Thus
by (2.13), [y, 0(X; — X2)]fz 4,0, i Proved a solution
of the homogeneous equation in (1 — Byy).

Discussion

The boundary conditions for the ¢* and ¢* models®
follow naturally from an understanding of the roles
played by x,...,,, the homogeneous solution. First,
itis the Lorentz-invariant completion of the inhomoge-
neous term of the integral equation, A{™ . Then
the invariant polynomial solutions of the homogeneous
equation served as subtractions. The number of
subtractions is determined essentially by the order of
the zeros at finite values of the invariants formed
from the momenta or the degree of polynomials
appearing for large momenta. Where the subtractions
are to be made is determined by the position of the
zeros. The number of subtractions in this formalism
is necessarily limited to two, since the polynomial
solutions of the homogeneous equation are limited
in degree by Eq. (2.34). The program of Chen lifts
this restriction, but encounters other difficulties as
will be discussed in the next section.

The major advantage of deriving the S-matrix
equations from the current formalism has been the
ability to make clear distinction between the non-
invariant operator coefficients B, - -1, and the
invariant vacuum products of currents and their
derivatives. Since the B,;---II,, coeflicients play a
role somewhat analogous to 6-function coefficients in
FD, it was possible to identify the Feynman graph
topology of the integral equation itself. One other ad-
vantage is essentially that of any operator formalism.
Before applying perturbationtheory, one is at liberty to
use operator identities to simplify a term as much as
possible, reducing it to a minimum number of factors.
For example, doing perturbation theory in the form
2

da,

g0 08
oa,

is much more strenuous than the equivalent form
(under unitarity),

_iss*iss
da, day

There is no inherent problem in extending this work
to physical models such as quantum electrodynamics
and this will probably be done in the near future.

® The ¢* interaction is discussed in Ref. 3.
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3. FINITE S-MATRIX THEORY

The work of Chen? has extended the S, theory to
a wider class of interactions. However, the theory
is by no means complete. Though Chen has proved
the existence of solutions, there is no mention of
what or how many supplementary conditions and
parameters must ultimately enter the theory to
specify a particular interaction to some order in
perturbation expansion. These questions are best
discussed in the context of S-matrix theory, where
the supplementary constraints take the form of
boundary conditions on the solutions of an integral
equation. The next section, therefore, develops the
S-matrix theory that is the natural extension of
Chen’s S, theory. Then the boundary conditions for
self-interacting Hermitian scalar fields represented by
the Lagrangian ¢” (r > 4) will be formulated. It is
found that, though the program is finite to any order
of perturbation theory, the traditional difficulty of
nonrenormalizable perturbation theories is still pres-
ent. The number of parameters necessary to determine
the solution is an increasing function of the order in
perturbation expansion. These parameters enter the
theory through boundary conditions.

Finite S-Matrix Theory

By finite S-matrix theory, we mean the extension
of the Pugh integral equation? for the m-point function
and appropriate boundary conditions in the manner
that Chen? has extended the S, formalism. The
program is developed in detail, since there are non-
trivial steps involving the generalization of B! =
1 — I — HEN to an m-point object B[~ and
its associated integral equation,

(1 = B™ Dy, = MM 3.D
Equation (3.1) must reduce to the nonperturbative
form of (2.1) for N = 1,

(1 —B...)0.. (2.13)

The logical canditate for BIY].  is the direct generali-
zation of (2.13),

m
Bi...,=1] B;; on F{..
1

> j=

m =M

Sm (3.2)

which for & # 1 is taken to be

BV, = ] B

ci> =1
By this definition Bl is idempotent with an
cigenspace to the right which is the natural generaliza-
tion of the N = 1 case. The idempotency is proved by
using the commutativity and idempotency of the

on GFtM . 3.3)
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BN, on 5V,

(BN = ( I B[N]) H (BIV)?
i>j=1 > g=1
H B[N] — B[N] n (3.4)
t>j=1

The right eigenspace of BLY1  is defined by the set

of xI1  satisfying the homogeneous equation
(1 — BIM) )i = 0. (3.5)
A necessary and sufficient condition for y{¥1  to be

a solution of (3.5) is that it satisfy

(1 — BIVhIM =0, forall i>j=1,---,m

(3.6)
That it is sufficient follows from the definition of
B Eq. (3.3). That it is necessary follows from
the commutativity and idempotency of the BLY! on
F'IN1. The proof of necessity is by contradiction.
Assume (3.6) is not satisfied by one of the B!
(i <j=1---m),say BNl Then we have

m

= B I B0 67

[N]

[N IN
V1, # By

X1

i> =1

by assumption and Eqs. (3.5) and (3.3). But

m
B 1T 85) = coe( IT 55)

i>j=1 i>j=1
(4,5#1,k)
= 1T B[M) T BV
1> j=1 i>j=1
(2,i#1,k) (3 8)

such that (3.7) becomes

m
N N N V. N, N
A B = ((TT B = A

i>j=1
(3.9
a contradiction. Thus (3.6) is also necessary.
Now the solution of
(1 - B =0 (3.10)

is given in momentum space by the set of functionals,'®

730 = {P(el, PO + 15, i, )}, (B.1D)
for P(p?, p9) a polynomial restricted by
L+ 1; < 4N, (3.12)

where /;, /; are the exponents of the two momenta in
any one term, while Q is an arbitrary distribution
restricted to &'. Thus the solution of (3.6) and there-
fore (3.5) is necessarily of the form

{P(pf o pi’n)Q[(ép?), Bio ﬁm}}, (3.13)

10 Equation (3.11) is the Fourier transform of the results published
in Ref. 2, p. 9.

~[N1
it
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for P(p? - - - p%) a polynomial restricted by (3.12) only
with i, j running over all momenta and Q again an
arbitrary tempered distribution.

Now in the framework of operator theory, the
projection operator (1 — BI¥] ) can facilitate the
derivation of the m-point equation (3.1) for N # 1
in the same manner as demonstrated for N =1 in
Sec. 2. Thus following Eqs. (2.10)—(2.21) we have the
operator form

AN =1 — B .
( zIJl-lBUV])
2 [~ B + (1 - BB
+ (1 — BIV)BINIBIV ...
+(1 - BE:)_]W( nBrM)} .
with - (3.14)
(1= B, 2 (1 = [N])[ﬁ(J + lé)]Jlk
=L da;
=TT (44 5, )0 = B
itk
2 ﬁ (J o ])P["](Jle) (3.15)
iFlk

where the last step follows by (1.17), such that (3.14)
becomes

AW L H (J + )P[N](JIJZ)

+ B (J + 22
j=1 0
7#1,3

+ B[x\]B[N] H (J +

J#ld
m—2 ié s
+ 1 BT (94 57 )P0t
i>j=1 k=1 5ak
(3.16)

J¥Fm-1

As a consistency check, we see that this result reduces
to (2.20) for N = 1. In addition, it is nonlinear in J
and its derivatives and therefore nonlinear in 8§ = §
or §* and its derivative so that in perturbation
expansion ALVI™ (nth order) is determined by all
solutions of order / < n. The integral equation for
the m-point function, Eq. (3.1), is to be identified
with the vacuum of (3.14) yielding

)P[ Ny

J

10 )P[N](J1J4) + -

J

(1 = B Doy =N = (AP

m>0’ (317)
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with AIY!  given by (3.16) and
... = <J1...m>o.

The general solution is accordingly

(3.18)

N N
= AN N

with ¢I¥). a solution of the homogeneous equation.

The structure of this theory corresponds with the
N =1 theory of Sec. 2. Again we have the relation

. (3.19)
m.s.(m.s.—1)

and the mass shell (one leg off the mass shell) ampli-
tudes are again contained completely in the homoge-
neous terms,

Wy...;m

BI1, =1

w,... v

= i (3.20)

Thus by the same argument as for N = 1, the separa-
tion of w, . into two parts is necessarily a non-
invariant separation. That is, the invariant yt¥1  are
restricted to the set

e

for P(p, - - * p,,) a polynomial in the invariants formed
from the momenta (p, - - - p,,) restricted by (3.12) and
F(pr Prdms.ims—p € ©'. Thus an invariant off
m.s. separation would allow only the polynomial
solutions of xI¥1 . But this would restrict ;... ms
to polynomials by Eq. (3.20). Therefore IV}  is again
determined up to invariant polynomials as the Lorentz
invariant completion of ALY . These polynomials
must then be fixed by appropriate boundary condi-
tions, a question to be discussed in the next section.

The discussion on diagrammatics for N = 1 will also
be valid here with N 5% 1. This follows since AN
(nth order) is composed of the same invariant vacuum
products of currents and their derivatives, but with
different noninvariant coeflicients characterized this
time by the explicit appearence of the superscript [V].
A typical term, e.g., is

B[N]<H (J + )P[M(J Jk)> ;

= BIVI [V]/ -
M IT (0 + 5 )0,

iFLk

+ B[AV]H[A\ ]/ ( 4 id )J Jk
“NE /o’
J#l
with BLY) some c-number coefficient composed of a

m
m.s.(m.s.—1) " im.s.(m.s.—1)-

[\]
Xl

}, (3.21)

m.s.(m.s.-1)

iELE
(n)

(n)
(3.22)
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suitable product of BLYT's. But the identification of dia-
grams was all carried out within the vacuum product
such that the discussionis not altered by the presence of
different coefficient functions, BIN). The uniqueness
argument also remains, once boundary conditions are
chosen to prevent the polynomial solutions of y{*!
from introducing new diagram topology in the form of
vertices. Whether or not the boundary-condition
program can be carried out is another question, and
will be discussed next.

Boundary Conditions

In perturbation expansion the equation to be solved
is

(1 — B i, =17, (3.23)
with the general solution
(X);") — A[\](n) + x[\.]('n) (324)

for xIN1® a solution of the homogeneous Eq. (3.5).
As already discussed, the requirement that o{™
be Lorentz invariant (and symmetric) determines
V1™ up to invariant (symmetric) polynomials in
momentum space satisfying the restriction (3.12). It
is therefore necessary to introduce boundary condi-
tions (b.c.) in order to determine these polynomials
and obtain a unique solution. These b.c.’s enable
finite unique results for theories of the form ¢" (r > 4),
but at the expense of having a number of parameters
that is an increasing function of the order in perturba-
tion expansion.

We have established the Feynman diagrams as the
topology of a one-vertex problem to any order of
the perturbation expansion. Thus the degree of
divergence of a particular graph in FD can be used
as a guide indicating the number of “subtractions”
that must enter in order that the formalism remain
finite. For ¢" theories the primitively divergent m-
point graphs in nth order are given by!

0< K< —4,
for (3.25)

K= —m+ (r — 4n.

K is the degree of divergence such that, for K =0, 1,2,
etc., the integral is called logarithmically, linearly,
quadratically, etc., divergent. Thus for each m-point
function there exists an order n for which a new
primitive divergence appears in FD theory for ¢,
r > 4. Therefore, the b.c. on @™ (p, - - - p,,) must be
such as to allow subtracted results to appear for n
large enough such that @ (p, - - - p,,) becomes prim-
itively divergent in FD. That is, for every m there

11 Reference 7, p. 205.
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exists an N such that for » > N, the b.c. leading
formally to FD,

lim &"(p, """ pn) =0, (3.26)

—Di *©
no longer yields finite results. But the only alternative
is
™(py - Py)
(=Y’

This follows since / < 1 determines the same poly-
nomials as / = 0; i.e., the requirement that V1™
be the Lorentz-invariant completion of A[¥1" deter-
mines it up to invariant polynomials that must all
vanish for the high-energy bounds given by / < 0.
The b.c. (3.27) for / > 1, on the other hand, deter-
mines the solution up to invariant polynomials which
are of degree k, in the p? component of any one 4-
momenta (p,; i =1, -+, m), where 0 < k < 2/, such
that they still satisfy the bound. Now to fix these
polynomials it will be necessary to introduce an
additional b.c. It must further be a bound for some
finite value of the invariant arguments since the

lim has already been exhausted. Thus for some

—p 2w

point in the phase space spanned by the m four-
vectors (Py, " * 5 Pu)s €8

{pl"'Pm}—’{al""xm}a

lim — 0, forsomel!/ > 1. (3.27)

2
—p; 2w

where
(i=1,--,mu=0,1,2,3), (3.28)

@' "™ (p, - p,) must be fixed in such a way as to
determine these polynomials. A sufficient condition
would be the requirement that these polynomials
have an /th order zero at this phase space point.
This is so, since invariant polynomials of degree
k < 2/ in any of the p? (i = 1,---,m) cannot have
an /th order zero. For example, a boundary condition
of this form that uniquely determines the solution
(i.e., fixes all polynomials of degree k < 2/ in p);
i=1,---,m)is

" u
p; > o

&M (pyoty - c ) = Yy

lim S P = (, (3.29)
3 ad (p— )
for
Iim= lim lim lim lim
p1ay plo_.alo Pll‘*‘lll p12—>p12 p13—rp13

This is because any invariant polynomial satisfying
(3.29) must contain the factor (p? — «2)?, which is of
degree k = 2/in p} violating the high-energy constraint
(3.27).

The y{» of (3.29) can be reduced to one parameter

m

for all orders through some solution of

Vm = Zog"yi,:", (3.30)
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such as

Ym=yY, 0=9p" (ns1),

where y,, is the measured value of

(3.31)

(I)(pl o pm)l{n.-}—'{azi) .

Thus a finite unique solution for @{™ . in the case of
a nonrenormalizable interaction of the form

Liyw=9¢" (r> 4),

is possible in this framework, but at the expense of
introducing at least one parameter for each point
function. Thus, since the number of different point
functions that necessarily enter the theory is an
increasing function of the order of perturbation, so
also is the number of parameters required.

Nothing has really been said about the numerical
value of the superscript N. By (3.12) it determines the
degree of polynomial and therefore the number of
subtractions entering the theory. Since these are an
increasing function of the order of perturbation,
calculations to all order would require that N — co.
But since the number of parameters must increase
indefinitely with N, the question of existence of

; N
lim BIM.
N—w
as a distribution in some space becomes academic,
For calculations to some finite order, N must be taken

large enough to accommodate all the subtractions
necessary to that order.

Discussion

In the preceding sections a program has been
demonstrated that can yield finite results to any given
order of perturbation expansion for quantum field
theories, consistent with the claims of Chen. However,
the price for uniqueness is a number of parameters
increasing with the order of perturbation. This break-
down of the perturbation expansion does not exclude
the possible existence of solutions in closed form or
even some other approximation scheme involving,
for example, a different parameter of expansion than
the one chosen here.

In this regard the work of Giittinger and Pfaffel-
huber'? is interesting. They have produced a one-
parameter subtraction convention, applicable to
nonrenormalizable interactions, and yielding finite
results unique up to infinite series of polynomials (in
momentum space). In addition, the claim is made
that these polynomials need not be determined, since

1*W. Gittinger and E. Pfaffelhuber, University of Munich
Preprint, 66/562-TH. 660, 1966 (unpublished).
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they do not contribute to the scattering amplitudes
on the mass shell. There is an inconsistency in this
argument, however, when applied to an iterative
solution based on Born approximation in the context
of the work presented here. That is, if one assumes
that to some order of iteration (perturbation), all
amplitudes including these polynomials are known,
but only on the m.s., then one does not have enough
information to generate the next iteration. This follows
since without knowledge of the off-m.s. amplitudes
of lower order, one cannot carry out the necessary
integrals. Thus we have a contradiction and the
Born term does not determine the higher-order parts.

4. SUMMARY

The Il-functional algebra introduced in CF.I. has
been applied to the derivation of the integral equation
of Pugh® without the construction of an interacting
field. In perturbation expansion a diagram represent-
ation of the integral equation can be constructed so that
it coincides with that of Feynman-Dyson in the formal
limit of the unrenormalized solution. This enables a
physical construction of boundary conditions and a
completion of the theory at least for the ¢* and ¢*
models. The arguments, however, are general enough
and can be extended to more complicated renormal-
izable models. This program is also directly general-
izable to the distributions of Chen? for which no field
representation has yet been derived. For this extension
it is further demonstrated that finite unique results
require @ number of parameters that is an increasing
function of the order of perturbation expansion.

There are many problems that remain to be solved.
The situation as it stands with respect to nonrenor-
malizable interactions is not very satisfactory. A
solution that in principle requires an arbitrarily large
number of parameters, even though finite and unique,
cannot be considered meaningful as a theory. How-
ever, it can be argued that this is simply due to an
expansion in terms of parameters for which no
expansion exists. There may still be exact solutions,
but how are they to be found? Now that a perturba-
tion expansion for renormalizable interactions exists
on a term-by-term basis, the question of its conver-
gence may be intelligently approached.

The algebra of the II-functions should be generalized
to higher-spin systems and many-field systems, and
the finite theory of quantum electrodynamics should
be completed with respect to the boundary conditions.
The implicit P-ordering concept must be explored for
the possible existence of an algorithm for the renor-
malized theory, the analog of the formal expression

(e=iH), .

J. G. WRAY
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APPENDIX A: THE B; FACTORIZATION
OF B,.. ,

Here it will be proved that B,..., has the factori-
zation

Bl~-~m=HBij on g‘.i,..m.

> j=1

(A1)

The restriction to §;, , comes about through the
use of relations such as

[Biz s Bkl] = Oa (A2)

which have been proved only on F’. The defining
representation for B, ..., is given in the text, Eq. (2.2).
To prove (A1) we note that

(1—=B;....) ﬁ B = ﬁ B;—By...n. (A3)

i>j=1 i>j=1
This is so since

Bl--~mBlk = Bl~-~m(BUc,m.s.(m.s.—l)),

(1< 1#k<m,
by
B |m.s.im.s—1 = 1, (A5)

where m.s. (m.s. — 1) means all legs on the mass
shell (all legs but one on the mass shell). Now this
implies

B,. ml:ﬂBﬁ =By...wBuBy By Bpim
=B;...mBu By By
Bl...miﬁle” =Bi...uBy " Buinm
=B,....Bpnin
=B ...,. (A6)

A useful representation for (1 — B,...,,) can be
obtained from a decomposition of the unit distribu-
tion. One starts with

L=6(1) - d(m) = (=)"(K)Agr(1) - - - Ag(m)
= (—)"(K),, (,216”‘02" B B - gmk)

X Ag(1) - - - Ag(m), (AT)
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for
a(i) = 8(x; — yi)

(K=K, Ko, (A8)

AR(i) = Ap(x; — ),
and

O = 0(x; — xz).
Now with the substitution
Ag(i) = AG) + A (), i5#k, (A9)

followed by appropriate grouping of terms, we obtain

1= (~ )m(K)mZ{(elkGZk ' kk—lekk+1

X (A(D) + AA(l)) “(Alk — 1) + Ay(k — 1))
X (A(k+1) + Ak + 1)) -+ (A(m) + B4 (m)Ag(K)}.
A further regrouping of terms yields

' mk)

1=B,...,+(— )m(K)mz{(elkGZk O
m—1
X Oysa O) 3 3 [(AL(A)™ -IJAR(k)} (A10)
(sets)
Here B,...,, has been identified as a particular

separation of terms with one inhomogeneous Ap
and m — 1 homogeneous A functions, while
2 (AN @)™

sets

i
1(m — 1= 1)1 [A.(z)

x A(a, + 1)+«

gAVICH)

: A(am—l)]’
for

(aln'am——l)=(ls“'sk_ 1’k+ 1,"':m)~
From (A10) we have the desired representation,

(A1)

m m—1
k=11=1 sets
for
Xlk = (_)m(K)melk
X Oy OeaOpin 0D DAY AR(K).

Now look at one term in the triple sum of (A12)
Xim = (=) (KImbimbzm  ** Opog,mBa(D) -~ - A (1)
X A+ 1)+ A(m — DAz(m). (A13)

This is an eigenvector to the left of II,,, + II
1 — B,,,, since

le(Hlm + Hml)
= (—)"(KmOimbzm * ** O, m
X fdfl A& A (x; — &) - - A D
XA+ 1)+ A(m — DAR(x, — &,)

X K¢ Ky {056,846 — yDARGE, — yn)
+ 0§m§1AA(£m — Ym)Ag(S — .Vl)},

m1 =
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which becomes, after twice integrating by parts,
le(nlm + Hml)
= ( )m(K)m acla:m02m e

0m—1,m

X [A (e — yDALD) - - A (D)

XA+ 1) Alm — DAR(x,, — ¥yl

+ (=) (Kb 02,00, 02m " * Ot m

X [Ag(x1 — yD)AL2) - A

XA+ 1) A(m — DA (X = ;)]
= (=)"(K)mb1mbm " * - em—l,m

X [AD) - ADAI+ 1) - A(m — DAR(m)]
= X (A14)

for 6,,,0,,, = 0 and 0,,,0,,, = 0,,,..
In the same manner it follows that

le = le(Hlm + Hml)(H2m + Hm2) e (Hlm + Hml)
= Xim(1 — Bip)(1 — Byyp) -+ (1 — Byy). (ALS)
But this implies
le H Bij
i>j=1
= Xyl = Bip)(1 — Byy) -+ (1 — Bzm)_Han
P> j=
=0, I>1, (A16)
by
Il B;;=B, [[ B; all I=1,2---,m—1,
i>j=1 i>i=1
and

(1 - Blm)Blm =0.

Now, since this analysis can be made for an arbitrary
term of (A12) and since / > 1 for all terms, we have

m m—1

(=B I[By=33 3 X, [T B, =0.
> j=1 k=11=1 sets i>j=1
(A17)
Equations (A3) and (A17) imply
-HlBij = Bl...m’

concluding the proof.

APPENDIX B: REMARKS ON THE TWO-
POINT FUNCTION

In this appendix it will be demonstrated that

By, =0, (B1)
for the case of renormalizable theories. Equation
(B1) was first proposed by Pugh,'® but the proof was
based on w(p, p,)|ms. = 0. This is not enough since,
for example, (p? + m?)|y 5. = 0, but is a solution of
the homogeneous equation and therefore does not

13 Reference 1, p. 347,
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satisfy (B1). The proof does follow, however, from the
stability of the vacuum and single-particle state.
We have for B,w,,

By, = leszoxlxz fd‘l)ﬁ d4.V2[A(x1 — YDAR(X2 — y2)

- AR(xl - yl)A(x2 - y2)] : KV1K112<(D(A1/1A112)>0'

(B2)
Integration by parts twice in y, yields

By, = Klewgoxlxz

X fd“yl d*yo{ K, [A(X; — pDAR(X, — ¥2)

— Ap(x, — YDA(xy — )’2)]} ) Kyg<q)(Ay1Ayg)>0'

— (lim — lim

y10 0 y0-—c0

) Klea:gezwg

x f &y, d*y,[AGy — y)AR(: — 7o)

- AR(X1 — yDA(xz — yo)]
X 300Ky ((Ay Ao

which equals
Biaor = Ko KDasss f A% — YK, D(Agd, )y
— Ko Koo,
X f &y, dy A — ALK — y)OK,,
X (a9 Ayyldco = Auy@iyo— oo }o
— Ko Ko fare, f @y, dya Ay — )
X A(Xa = Y00 KAy @D oo
= K. Koo, f VA = 1)K, O (A, o

- AR(xz — y2) <(ag?t‘]yz - Jﬂza::»(’

— A(xz — y2)J,@5000)- (B3)

J. G. WRAY

The last term of (B3) vanishes by the stability of the
single-particle state, since

f d*yeA(xs — y2) O] J,, = (O] (@l — a®) = 0. (B4)

This leaves the first two terms which, after integration
by parts in the first term and substitution of fields for
the integral over the current in the second term,
becomes

B,y

= Ky Ky oyl — (@5 Ay, — Ay @™o — iA(x; — X))
+ ([ast (A, — @) — (4, — a'Mally).  (BS)

But ((a3;'4,, — A, a)y, = <[_012,A31]>o by (B4) for
a = a,. Further, only the single-particle state con-
tributes to a sum over intermediate states

(0} a,,A4,, 10y = (0] a,, [1){1] A,, |0)

= (0] a,, |11} a,, |0),
such that

out i
«aa:: Azl - Ax,a:;»o = [amga a:cl],

and (B5) becomes

(B6)

Bywys = K, K0, .. {—[a,,, a,,] — iA(xy — x))
+ <[aa:1(amz — Q) — ((122 - amg)azlbo =0 (B7)

The result was proved independently by Wilner'4 in
momentum space using the assumption of a spectrum
gap between the single particle state and continuum
for the spectral representation of the 2-point func-
tion. There it becomes clear that (B1) holds, because
of the 2nd-order zero on the mass shell as expressed in
the 2-point boundary condition, Eq. (2.36).

14 M. Wilner (private communication).
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The method of an extended canonical point transformation is used to reformulate the singular repul-
sions in a classical hard-sphere gas as equivalent velocity-dependent interactions. The approach provides
a Hamiltonian in which the repulsions appear as nonlocal potential interactions between the particles and
may therefore be treated within any of the conventional perturbation methods of many-body analysis.
Application of the technique to obtain a kinetic equation for a hard-sphere gas is outlined.

1. INTRODUCTION AND MOTIVATION

Considerable difficulties arise from attempts to
apply any of the usual techniques of analysis in
describing the effects of the strong short-ranged
repulsions between the particles of a classical many-
body system. If these repulsive forces are idealized
(and mathematically simplified) by assuming that the
individual particles are structureless elastic spheres of
diameter o, the interactions are too singular to permit
any meaningful perturbation approximation. More-
over, for a van der Waals-type system the combination
of weak long-ranged attractions and the hard-core
repulsions appears to be inherently untreatable within
any formal expansion type of development. Conse-
quently, one usually finds that a comparatively naive
approach based upon some self-consistent insight into
a particular formalism results in the best possible
analysis.

The present article summarizes the efforts of the
author to provide a comprehensive method which may
be employed to describe the repulsive interactions
within any of the conventional techniques of many-
body physics. The central idea is to reduce the effects
of the hard cores into equivalent but more regular
potential interactions while retaining the essential
Hamiltonian description of the particle dynamics.
Following a suggestion of Gross, this is accom-
plished by performing an extended canonical point
transformation upon the dynamical coordinates so as
to express the repulsions as equivalent velocity-
dependent forces between the individual particles.
Such interactions are well known in classical me-
chanics and can be studied within any statistical-
mechanical formalism without difficulty. The analysis
in fact becomes a novel exercise in determining the

* The research reported in this paper is based upon a Ph.D.
thesis presented at Brandeis University, Waltham, Massachusetts
(1966) and supported in part by the Office of Naval Research under
Contract NONR 1677-04.

t The author is currently NBS-NRC Postdoctoral Associate at
the National Bureau of Standards, Washington, D.C., 20234.

properties of a many-body system whose Hamiltonian
contains a simple momentum-dependent potential.

The approach is developed by recognizing that the
hard-core repulsions imply the existence of certain
excluded-volume regions in the coordinate phase
space by prohibiting any two particles from approach-
ing closer than a distance ¢ apart. Such restrictions
are essentially kinematic (holomorphic) constraints
upon the relative physical motions of the individual
particles,’ and can be eliminated by making the
coordinate representation dependent upon the relative
positions of the particles. In order that this modifica-
tion of the coordinates leaves the description of the
particle dynamics unaltered, the conjugate-momentum
variables must be correspondingly modified. This is
accomplished by means of the extended point trans-
formation of the coordinates and momenta. It is the
spatial dependence of the canonical momenta which
reformulates the kinematics constraints into the simple
nonlocal velocity-dependent interactions between the
particles.?

This technique of reducing singular coordinate
repulsions between the particles of a many-body
system into more regular momentum-dependent
potential interactions was first proposed by Bohm and
Gross® and developed by Eger and Gross?~® to study
the equilibrium properties of a system composed of
hard-core bosons. They were able to effect a re-
formulation of the hard-sphere scattering for binary

! This is analogous to the restriction which F. Dyson [Phys. Rev.
102, 1217 (1956)] noted in attempting to distinguish between
kinematical and dynamical interactions of a magnetic-spin system
where a form of kinematic constraint ‘“arises from the fact that more
than 25 units of reversed spin cannot be attached to the same atom
simultaneously . . . there is therefore a certain statistical hindrance
to any dense packing of spin waves within a region.”

2 Bohm and Pines have pointed out that it is such a canonical
reformulation of the 2N individual dynamical coordinates into the
collective-coordinate representation which in effect replaces
position-dependent potentials by equivalent momentum-dependent
interactions. See D. Pines and D. Bohm, Phys. Rev. 85, 338 (1952).

3 D. Bohm and E. P. Gross (unpublished). See Refs. 4-6.

4 M. Eger and E. P. Gross, Ann. Phys. (N.Y.) 24, 63 (1963).

5 M. Eger and E. P. Gross, Nuovo Cimento 34, 1225 (1964).

8 M. Eger and E. P. Gross, J. Math. Phys. 7, 578 (1966).
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collisions that in fact reproduces the usual phase-shift
analysis, by choosing the transformation with regard
to a metric-potential term which appears as the result
of noncommutativity of the quantum-mechanical
momentum and position operators.” A similar ap-
proach has been put forth by Luban,® who was able
to explicitly construct an operator defined over all
relative distances between two particles which plays
the role of a Hamiltonian such that the subsequent
eigenvalue problem has as its only solutions precisely
the eigenfunctions for two hard spheres. Both of these
developments clearly exhibit the nonlocal aspects of
hard-core repulsions in the wavelike characterization
of the quantum particles and unlike the pseudo-
potential method? provide for a completely equivalent
but more regular (Fourier analyzable) Hermitian
Hamiltonian over the entire phase space.

In this paper a similar analysis is completed for a
classical hard-particle system. A general form of the
exact transformation is first obtained for the two-body
problem where the method is easily shown to repro-
duce the details of the classical hard-sphere scattering.
Generalizing this procedure to the full many-body
system, it is noted that the appropriate transformation
involves determining the Jacobian of the coordinate
transformation relating all N — 1 relative positions of
the particles. Since the reduction of any such a form
is not practical (let alone possible), the transformation
is taken to be linear in the conjugate momentum. The
result is a Hamiltonian which retains many of the
features of a point-particle form. Exhibited in this
manner, it is immediately seen that the real advantage
of this canonical reformulation permits the strong
repulsions to be studied within any of the standard
perturbation formalisms. By assuming that the colli-
sions may be decomposed into a simple superposition
of binary encounters, the virial expansion is easily
reproduced. To illustrate application of the approach,
the properties of a van der Waals system are discussed
by developing a mean-field approximation valid for
both the hard-core repulsions as well as the weaker
long-ranged attractions. A description of the ap-
proach to equilibrium for such a hard-sphere gas is
outlined using Zwanzig’s projection-operator for-
malism.

7 An excellent exposition on the canonical elimination of the hard
core for quantum particles is contained in an article by J. S. Bell,
‘*Many-Body Problem” in Bergen Lectures (W. A. Benjamin, Co.,
Inc., New York, 1961). In the quantum-mechanical problem, the
nonlocal aspect of the hard-core repulsions is immediately obvious
due to the wavelike characterization of the particies. For the classical
scattering of two hard spheres the nonlocal nature of the interaction
is by no means as apparent.

8 M. Luban, Phys. Rev. 138, A1028 (1965).

? See K. Huang, Statistical Mechanics (John Wiley & Sons, Inc.,
New York, 1963).
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2. TWO-PARTICLE TRANSFORMATION

The phase-plane motion of two intersecting hard-
core particles serves to outline the qualitative behavior
of the scattering process and to motivate the basic
features of the transformation. For identical but
distinguishable rigid spheres of mass m and diameter
o, the scattering process is described in the relative
coordinate system (r =1, —1I,, p=P; — P, U T€-
duced mass) by the Hamiltonian

H(r,p) = (12w)p* + V(). @1

The interaction potential ¥(r) is assumed to depend
only upon the magnitude of the relative coordinate
[r|. The geometric constraint that no two particles
occupy the same region in space is expressed by
restricting the domain (of definition) of r such that
r > o and excluding the region 0 < r < 0. For un-
bounded physical motions, the incident particle is
scattered symmetrically about the apse of the orbit
passing a distance r, from the scattering center. When
the distance of closest approach is greater than the
size of the hard-core ry > o the particle motion is
reversed continuously at the turning point of the orbit
as the radial momentum vanishes identically p,(r,) =
0. If, however, the particle strikes the scattering center
ro < o in an elastic collision, the motion undergoes
an abrupt reversal of direction, experiencing a dis-
continuous change in the radial momentum by an
amount Ap, = —2p, (r = ¢).

The restriction of the physical motion to the region
r > o may be eliminated by simply choosing a new
relative coordinate variable R defined over all values
|R| > 0 and expressing r as a continuous function of
R. The simple form r = S(R) = R + o serves to
illustrate the technique. If, however, the transforma-
tion is to leave the description of the motion unaltered,
it is necessary to effect a compensating change in the
conjugate-momentum variable p so that the new
momentum P possesses a zero at the value of R
corresponding to the turning point of the motion,
Pr(re) = 0.

This change of variables from (r, p) to (R, P) can be
made rigorous by means of a simple canonical trans-
formation, the invariance of the Hamiltonian formal-
ism preserving the dynamical description of the
motion.!® From the generator of such transformations
S(p, R), specification of the relationship r = S(R)
dictates the functional form of

33(p, R)/p = r = S(R). 2.2)

10 See any standard text on classical mechanics such as H.
Goldstein, Classical Mechanics (Addison-Wesley Publ. Co., Reading,
Mass., 1950).
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It follows by integrating with respect to p that
S(p, R) = p - S(R) + Sy(R). 2.3)

The conjugate momentum P is then determined as a
function of the variables (p, R) as

p_3@.R)_  3SR)
oR oR

[A simple gauge transformation has been used to
eliminate the additional term 0S,(R)/0R which arises
as a constant of integration.]

Since the scattering depends only upon the magni-
tude of the relative coordinate r, one may choose
S(R) to be a spherically symmetric function. The
angular coordinates (6, ¢) then undergo the simple
identity transformation to (®, ®) provided S(R) has
the components {S(R), @, ®}. From the generator of
the transformation

S(p, R) = p,S(R) + p,0 + py?, 2.3)
it follows that the conjugate momenta are given by

_98(p.R)

(2.4

P , 2.6
IR (2.6a)
P, p, 95(R)
aR
rol= 5 |} (2.6b)

corresponding to the inverse coordinate transforma-
tion

r = 0S(p, R)/dp, (2.7a)
r \ S(R)

by=1| © (2.7b)
J

If the coordinate R is to be defined over all R > 0,
the transformation must be chosen such that the
origin R = 0 corresponds to the point 7 = o. This is
achieved by setting S(R = 0) = ¢. The conjugate
radial momentum Pp will then exhibit a true turning
point for some value R, > 0 corresponding to a simple
scattering about ry > ¢ or must vanish identically at
R =0. From the identity Pp = p.[0S(R)/0OR] it
follows that §’(0) = 0.

For asymptotically large values of the radial co-
ordinate r — oo, the scattering remains unaffected by
the presence of the hard core, suggesting that S(R)
reduces to the simple identity transform for large R

SR> 0) = R, (2.8)
dS(R > 0)/oR = 1. (2.9)
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Combining the limiting values for large and small
values of R, the function S(R) is seen to be a simple
monotonically increasing function of R satisfying the
conditions

(1) SR=0)=0, (c3) SR>O0) =R,
©2) SR=0)=0, (c4 SR>0) =1L

Within the requirement that the particular form of the
transformation be chosen to preserve the description
of the individual scattering events, any further speci-
fication of the form of S(R) is unnecessary (see
Appendix).

These properties of the function S(R) can be shown
to be consistent with those obtained directly from
the equations of motion. Since the scattering Hamil-
tonian in radial coordinates
How = 5[ o+ a0l 4 V0> o)

’ 2077 270 Rsin?e?
(2.10)

remains invariant under a canonical change of vari-
ables, a direct substitution for (r,p) in terms of
(R, P) transforms H(r, p) into

H(R,P) = i[(%f + ('s}()_z))z * (sﬁ%@ﬂ
+ V(SRR). (2.11)

Instead of attempting a complete description of the
scattering in terms of quadratures, it is sufficient to
consider the dynamics of the equivalent .one-dimen-
sional reduction by expressing the radial momentum
Py, as a function of the total energy (H = constant E)

_35(R)

Pr="0r

(2M{E — V(S(R)}

Po)’ Py V1V
[(s) ’ (Ssin O)D @12
The term [(Pg/S(R))?* + (Py/S sin ®)?] is the modified
centrifugal potential barrier which scatters the incident
particle about a (continouus) turning point at the
zero of the radical. If the radial kinetic energy is
sufficient to overcome this finite centrifugal barrier,
the incident particle is turned around at the origin
R = 0 by requiring that 9S(R = 0)/dR vanish iden-
tically.1
From the properties of S(R) it is seen that the
transformed static potential V(S(R)) remains unaltered
at the end points r = ¢ and r— co, while for the

11 Unlike the usual centrifugal barrier which diverges as r—2 at
the origin (» = 0), the modified form {S(R)]"2 is finite at R = 0.
The kinetic energy, however, remains bounded by requiring that
[PR(R)/S(R)] be finite everywhere.
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intermediate values of the radial coordinate r =
S(R) < R, the potential is altered by the smearing out
of the hard-core repulsion over the entire space. In the
limit of a vanishingly small core size ¢ — 0, these
results conveniently reproduce the usual expressions
for radial scattering as S(R) reduces to the identity
transformation S(R) =

3. MANY-PARTICLE TRANSFORMED
HAMILTONIAN

The analysis of the previous section clearly demon-
strates that it is possible to eliminate the geometric
restriction on the relative coordinate r > o for the
two-particle scattering Hamiltonian through a canoni-
cal reformulation of the dynamical variables. Through
a generalization of this technique one can effect a
similar transformation for a system composed of N
such particles which will eliminate the (¥ — 1)
constraints from the many-body Hamiltonian

H—_—'22+ ZV(ru>0)
zn’lzl

(3.1)

However, as this involves the simultaneous knowledge
of the relative positions between all N particles, it is
not possible to explicitly construct the generator Gy
of any such transformation. Instead (having exhibited
that such a reformulation exists for any two particles),
it is asserted that for the set of dynamical variables

r= {rl’rza"' ,rN}9 pP= {p15p2"“ spN}’

all r,; > o, there exists a transformation Sy(p, R) to

the set
R=1{R;,Ry, "~ , Ry}, P={P,Py, "
3Sy(p, R) 3 Sy:[r, p] = [R(x), P(r, p)],
where S is to be chosen from the full canonical group
so as to preserve the description of the individual

scattering events. The most general such transforma-
tion possible will then relate the variables as

Ri = Rz‘(rla LTI rAV),

P, =Pi(ry,r2, ", Ty, P1yPes " "5 Py)s
for which it is immediately apparent that no manage-
able algebraic manipulation can be performed. It is
therefore necessary to impose certain realistic restric-

tions upon Sy in order to obtain a tractable form. For
this purpose, it is assumed that the transformation:

H PN}

(i) reduces to the simple identity form in the limit
of point-particles, the hard core vanishing identically
(0=0),

(ii) depends only upon the relative coordinates
between the particles (translational invariance), and
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(iii) relates the momenta P linearly with p.

This can be achieved by a generator of the form

N
QN(pa R) = lez * Si(Rs 0)9 (32)

with .
SSR,0=0)=R (3.3)

since
9QV N

; 34
P. ~ OR, ; g aR 34
r, = %Q—V = S/(R, o). (3.5)

i

Under such a canonical transformation, the original
Hamiltonian H(r, p) becomes

Sy:H(r,p)= HR,P) = X(p,R), (3.6)

where
1 X Y
X(P,R) = — zPiAZ-,-(R)P,. + - EV(U).
2mi,; 2i%j

The modified potential interactions have been denoted
by

7(ij) = V(IS:{(R) — S,(R)]). 3.7
The dyadic
W95, (95,7
A,R) _gl(éi:) (6R1) (3.8)

is a spatially-dependent quantity which by coupling
the various components of the different particle
momenta gives rise to the velocity-dependent inter-
actions which prohibit particle motions into regions
of r; < o.

If the system is translationally invariant, the re-
pulsive interactions can be separated from the usual
kinetic-energy terms [(1/2m) > P?)] by setting

Ay(R) = 0;; + oG,;(R), 3.9)

where ¢,; defines the Kronecker delta (unit dyadic).
The metric G;;(R) forms a 3N x 3N matrix whose
elements depend upon the relative positions of all ¥
particles in the system. If only pairwise interactions
occur (binary collisions), G.;(R) will depend upon
relative coordinate R;; only.

Expressed in this manner, the transformed Hamil-
tonian

N
(P, R) = 5— Spry o = SPG,(RP, + z Z0)

2mi#
(3.10)

closely resembles the usual point-particle form—the
quadratic dependence upon the momenta being a
characteristic of the linear point transformation.
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Although it contains momentum-dependent inter-
actions (3 P,G,;P,) in addition to the modified po-
tential term, H is no longer restricted by the set of
N — 1 constraints (all r;; > o).

Associated with the general transformation which
carries the 2NV dynamical variables (r, p) into the set
(R, P) is the Jacobian

S 3R,P) oR/or OR/op
T, p) oP/or OP/dp

The nonvanishing of this functional determinant is
both the necessary and sufficient condition that the
mapping be unique and reversible. By taking the
transformation from the full canonical group so as to
preserve the properties of the Hamiltonian formalism
insures that this Jacobian is identically unity. Further-
more, since any canonical transformation leaves the
extent in the phase space an (integral) invariant
quantity

f dr f dp = f iR f dP[3(r, p)/3(R, P)] = f dR f ap,

the average of a physical observable determined over
an appropriate distribution function p(H) remains
unaltered

f dr f dpp(H(r, p)) = f AR f dPp(H(R,P)). (3.12)
By the particular choice
g‘\": (l', p) = {R(l‘), P(l‘, P)},

it follows from the group property of the transforma-
tion

. (3.11)

(r, )= (R, p) = {R(®), P(r, p)}
that the Jacobian then obeys a product law
J = det dR/or - det oP/dp.

Because of this, the integral of the canonical distri-
bution function p = e~ over the phase space can be
written as

f dR f dpJ - p(JC(R, p).

This allows the Jacobian of the coordinate transforma-
tion

Jr = 0(r, p)/0(R, p)
to be interpreted (in the manner of Kirkwood) as an

equivalent ‘“‘temperature-dependent configurational
potential energy”

B(R) = —p1 log Jp(R). (3.13)

(A further discussion of this property is provided in
Sec. 4.)
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4, STATISTICAL MECHANICS OF VELOCITY-
DEPENDENT INTERACTIONS

To provide further motivation for this replacement
of the hard-core repulsions by equivalent momentum-
dependent interactions, consider the properties of an
N-particle system with the Hamiltonian

3N

=2 p.ALRP,. (4.1)
[May,'? noting that velocity-dependent interactions
are often used in nuclear physics to simulate the effects
of nuclear forces, has pointed out that “it is quite
reasonable to expect a certain similarity between the
velocity-dependent potential and the hard-core re-
pulsions” between the particles of a many-body
system. Postulating a Hamiltonian of the form Eq.
(4.1), he considered the partition function and
developed the cluster expansion for such a system.]

Because this Hamiltonian is quadratic in the mo-
mentum, it follows immediately from the classical
equipartition theorem

3N a

() = % Py
>ﬂ \; b apy

that the energy is simply
=T (B = 1/KT).

The specific heat C, = 3k is therefore independent
of the temperature and thus identical to that of a
collection of N simple noninteracting hard particles.

The detailed statistical properties of the system
may be obtained from the N-particle distribution
function p(JC). Preforming the 3N-fold integration
over the momentum phase space!® determines the
spatial-distribution function

p(R) =fdpe—ﬂJ€(p,R)

= (mfp) ¥ [det AR, (4.4)
Exponentiating the det! form, it is seen that the hard-

core repulsions give rise to a potential of average
force for which the interaction energy is

S(R) = —(1/28) log det A(R).
12 R, May, Nucl. Phys. 62, 177 (1965).
'3 H can be expressed as the sum of squares by a simple rotation

of the momentum space, thereby reducing the integral to the
product-independent integrals

+ © . N
I= dpy - fde exp (—z piAijpi)
- i

N +o N
=711 dx, exp (~}a2x2) = [ | @mia )},
n=1

n=1 J—©

%) = 3N

=3 4.
/ﬂ 28 (4.2)

4.3)

(4.5)

with a,a, * - - a, = det 4, and hence the identity.
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[Compare this result with Eq. (3.14) of Sec. 3.] By
developing a formal expansion for the log det 4 it is
possible to represent this potential energy as the sum
of individual interactions between clusters of parti-
cles.1

The partition function Z is found by carrying out
the remaining integrations over the coordinate space

= —BX(R,p) __ - N dR .
‘ J de e (lP) f [det A(R)}

(4.6)

The resulting configurational integral is seen to be
independent of the temperature—a property unique
to the excluded volume regions of a collection of
hard particles. Since the actual evaluation of this
configurational integral is not possible, it is necessary
to resort to the usual procedure of decomposing the
integrand into irreducible cluster diagrams. In fact,
noting that the integrand can be expressed as the
Jacobian of the coordinate transformation

v )
dRJ, =|dR,---| dR — 47
f B f ! f Ni:#:' o(R;;) “.7)

the standard results for the virial coefficients of a
hard-sphere gas are easily reproduced.'»14

5. APPLICATION TO A VAN DER WAALS GAS

The previous reduction of the hard-core repulsions
into simple momentum-dependent interactions served
only to postpone the actual analysis of the many-body
problem. However, in doing so, this approach provides
an equivalent Hamiltonian in which the singular
repulsions may be treated as simple interactions
between the particles rather than kinematic constraints
upon their relative motions. This is especially useful
in studying the properties of a classical van der Waals
system since it permits the strong repulsion to be
described in the same manner as the weaker long-
ranged attractions.

For example, a standard procedure in many-body
analysis is to replace the direct interactions between
the particles by an effective potential obtained in
some mean-field approximation. To lowest order,
this procedure requires only finding the average value
of the direct interparticle potential V(r;;) normalized
over the entire volume £2

Vo= Q71 f drV(r).

(In the collective coordinate representation this is
equivalent to determining the small wavenumber k

14 M. J. Cooper, Brandeis University thesis, 1966 (unpublished).
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behavior of the Fourier transform of the potential.)
But the average value of such a pathological inter-
action as the hard core V(r < 6)— o0, V(r > 0) =0
does not exist and therefore certain obvious difficulties
arise.!> However, as the individual elements of the
matrix G,; in effect represent the repulsive interactions
between the particle pair i~j, a mean-field type of
approximation can be easily carried out for the hard-
core interactions. Replacing each G;; by its average
value,

Gy~ Gy= Q' dRG,,(R) ~ A/Q, A = %nd’,
(5.1)

simplifies the corresponding A matrix to the form
1 Gy Gy - G,
G, 1 Gy, ' G

A=|G G, 1 =10;; + Go(1 — 9;)1,

(5.2)

with eigenvalues g, " * * g,
gi=1+ N = 1G,,

g2=g="""=gy=1—-0G,.

Relating the det of a matrix to its eigenvalues
(det G = TT, g.) it follows that the configurational po-
tential energy Eq. (4.5) in such an approximation is

9 = (28)~ log det (1 — oG)
_1 Né _ _
~ (28) |:log(1 - Q) + (N — 1) log (1 A/Q)].

(5.3)

This is the usual description for the excluded-volume
effect in a van der Waals-type gas in which each
particle decreases the total accessible volume by
exactly its own size.

Using this equivalent representation for the hard-
core repulsions it is also possible to attempt a detailed
calculation of the dynamical behavior for a hard-core
gas. With the effects of the collisions reduced to the
momentum-dependent interactions between the parti-
cles, one may simply proceed within the usual per-
turbation formalisms instead of constructing an
ad hoc collision term based upon arguments of

15 In the collective coordinate representation, J. Percus and G.
Yevick {Phys. Rev. 138, A1028 (1965)] have shown that the hard-
core repulsions can be replaced by an “‘equivalent potential whose

precise value depends upon the approximation used for the long-
ranged forces.”
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continuing molecular chaos of forgetful collisions.
The problem of doing so, however, is somewhat more
complicated because the interactions are both spatially
and velocity dependent.

The temporal evolution of the phase-space distri-
bution function p(r, p, #) is conveniently summarized
in the single Liouville equation

i(0p/0t) = Ep, (5.4)

where the Liouville operator £ is obtained from the
Poisson bracket with the Hamiltonian

o o 0¥ 9
L=, }=il— =~ ). (535
i3, } (ap 2R oR ap) (5:5)
If only binary collisions occur between the particles,
the total Hamiltonian is of the form of Eq. (4.1),
where the elements G, are functions of the individual
R;; only. The corresponding Liouville operator thus
consists of the sum of an unperturbed term
£ 3 9
=—id P 5.6
0 llgl P aR, (5.6)
plus terms arising from the direct potential inter-
actions
N
- A §WRY2_ D

s 5.7
) S

and the effects of the momentum-dependent inter-

actions
¥ 3GR) (2 8
oo =io2 P —on Pf’(ap,. ap,.)

7

2i%;

0
2p,G(R;)) R, (5.8)
The coupling of the strong repulsions and the potential
interactions are observed in the noncommutativity of
the various parts of the perturbed Liouville operator,
oL = AL, + of,.

For a spatially homogeneous system, the momen-
tum-space distribution function p(p, ) has been
shown by Zwanzig!® to obey a master equation of the
form

a t
2 o0 = - f dTR(T, 4, )p(p, t — T), (5.9)
t 0

where the kernel X is the projection of the perturbed
Liouville operator over the entire coordinate space

% = QLN f dR, - f dRy3E(R,p) =T+ 6C. (5.10)

In the absence of any weak interactions 4 = 0,
when the only interactions between the particles occur

18 R. Zwanzig, J. Chem. Phys. 33, 1338 (1960).
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through direct collisions, this equation becomes

op(p, ) _
ot

¢
—sz dr§ L e i TU-9Le p(p,t — T).
0
(5.11)

For very short collision intervals, in the long time
t — oo this may be reduced to a master equation of
Markoffiian form (p ~ e=T%),

dp(p, T)/0T = —Cp(p, T), (5.12)

o0
C =f dr§ e o g | (5.13)
0
where the collision operator consists of two terms.’
For particles interacting through both weak attrac-
tions and hard-core repulsions, the noncommutativity
of the various parts of the perturbed Liouville operator
give rise to an integro-differential equation preventing
any easy solution for p(p,?). However, a Kkinetic
equation for such a van der Waals system can be
obtained in which the effects of the collisions are
described by the velocity-dependent interactions.1®1#

APPENDIX A: PHYSICAL FORM OF TWO-
BODY TRANSFORMATION

It has been shown that the conditions on S(R) are
sufficient to insure that the form of the coordinate
transformation preserve the mechanical description
of the two-particle scattering. Since the canonical
nature of the transformation leaves the statistical
properties of the system unaltered, it is not possible
to attempt any variational procedure to further deter-
mine S(R). Instead, physical considerations must be
used to motivate a particular choice within the full
canonical group. For example, Eger and Gross,*
in using this method to eliminate the difficulties
associated with the repulsive interactions in a system
of bosons, chose the transformation so as to enable
one to play off the various types of interactions in the
system, thereby simplifying its description.

Lacking any such criteria for a dilute system of
hard-sphere particles, for the purpose of illustration,
we choose the two-particle transformation

r = S(R) = R + ge E/°,

17 Because the interactions depend upon both the action and
angle variables, the collision operator thus obtained is in general a
complex quantity. Consequently, the approach to equilibrium will
not necessarily be strictly monotonic but will tend to oscillate. A
similar result was found by I. Prigogine er al. [Non-Equilibrium
Statistical Mechanics (John Wiley & Sons, Inc., New York, 1962)]
for a lattice system of very strongly interacting particles.

18 L. de Sobrino, Can. J. Phys. 45, 363 (1967) has recently pro-
posed a kinetic equation for a van der Waals gas in which “just
before a collision the correlation between two particles is due
exclusively to the decrease of the volume of the phase space due to
the hard cores.”
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This form not only satisfies the boundary conditions
on S(R) but in the limit of a vanishing hard core
o — Oreduces to the simpleidentity r = S(R, 0 = 0) =
R. 1t represents a physically satisfactory transforma-
tion in that it falls off rapidly, reducing to r ~ R after
several hard-core radii, without the introduction of
any arbitrary cutoff. The Jacobian associated with the
coordinate transformation forms an equivalent po-
tential

Op = —flogJp = —fp log (1 — ),

which is bounded below and vanishes for large values
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of R such that its integral Q' { dROy exists and is
finite. It therefore satisfies the necessary and sufficient
conditions on the pair potential that a stable con-
figuration exists for the many-body system.!®
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When only a few partial waves are substantially phase shifted and yet many partial waves are slightly
phase shifted, it is possible to use the direct Born approximation, provided that one projects out the
inaccurate lower partial waves and replaces them by accurate theoretical or phenomenological phase
shifts. We test this technique for central potentials with two different well strengths, i.e., one which will
fail to bind the 1.5 wave, and one which can bind the 1.5 state. We compare numerically generated angular
distributions and total cross sections with those obtained from a modified form of the direct Born approxi-
mation. The technique would be useful for weak forces, e.g., the nucleon-nucleon and electron-atom
interactions, but inapplicable for strong forces, e.g., atom-atom interaction.

1. INTRODUCTION

In the analysis of elastic scattering of a particle
by a central potential, one sometimes finds that the
first few partial waves experience substantial phase
shifts, whereas the higher partial waves are only
slightly affected. In the case of a weak central potential
which gives rise to no bound states, or at most one
bound state, the S wave alone undergoes a major
phase shift. In such circumstances the scattering
amplitude as calculated by the Born approximation is
quite reliable for all the partial waves, except the first
few—say the S and P waves. When this occurs, it
seems possible to adapt the direct Born approximation
which is so convenient. The modification consists in
projecting out the lower partial-wave components
(say the / = 0 and 1) from the closed-form expression
for the Born elastic-scattering amplitude and replacing
them by accurate components. To determine the
accurate scattering amplitude we can use the values of
phase shifts of the corresponding partial waves,

* Supported in part by U.S.A.F. Office of Scientific Research.

determined either experimentally or by some theoret-
ical calculation. Thus we obtain the modified Born
elastic-scattering amplitude in terms of usual Born
amplitude, a few subtractive terms representing the
lower partial-wave components of the Born amplitude,
and a few additive terms representing the exact
amplitude for the lower partial waves. The correction
terms are important only in the low-energy region;
in the high-energy region the total direct Born ampli-
tude should become dominant.!

If for a scattering problem there is not a sufficient
amount of differential cross-section data available, or
if the experimental errors involved in obtaining the
differential cross sections are moderately large, a
phase-shift analysis may greatly reduce the reliability
of the data. In such cases the comparison of theoretical
and experimental results may be more meaningful in
terms of differential cross sections where the modified
Born approach is very convenient. Powell and

! N.F.Mottand H.S. W. Massey, The Theory of Atomic Collisions
(Oxford University Press, London, 1965), 3rd ed., Chap. V.
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Crasemann? have discussed a similar approach, one
which treats the first one or two partial waves by
other methods, when the Born approximation is
inapplicable to them because of their large phase
shifts.

2. MATHEMATICAL FORMULATION

The exact scattering amplitude, in terms of partial-
wave phase shifts, is given by

0

fe(E, ) = 3 (21 + 1) f (E)P(cos 6),

=0

2.1)
where
fo(E) = (1/k)e”®*Fsin 6,(E).

The Born scattering amplitude may also be placed in
the form

FolE.0) =§ Q@1 + 1)fs (E)Py(cos 6),
where N

Fou(E) =% f_llfB(E, 8)P,(cos 6) d(cos ). (2.2)

We suggest a modification of the Born amplitude of
the form

Sup(E, 0) = fu(E, 0) + fc(E, 6), (2.3)
where f (E, 0) is the correction term given by
N
Je(E, 0) =l§0 (21 + Dfe E)P(cos B),
and where B
JedE) = fe.(E) = fo,(E). 24

Here N denotes the maximum number of lower
partial waves to be corrected.

3. THE YUKAWA POTENTIALS

We consider first a spherically symmetric central
potential represented by a Yukawa-potential function.
We scale our distance so that the potential is in the
form

U(r) = Quli)V(r) = —ale"r), 3.1

where o is a dimensionless constant whose magnitude
characterizes the parameters of the attractive potential.
[Usually U(r) = —aexp (—ur)/r, but in this paper
we have chosen u = 1 for convenience.] For a central
field the scattering amplitude in the Born approxima-
tion is given by

Ful(E, 0) = — 71( L rsin KrU@) dr,  (3.2)

where
K = 2k sin (10).

2J. L. Powell and B. Crasemann, Quantum Mechanics (Addison-
Wesley Publ. Company, Inc., Reading, Mass., 1961), p. 277.
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Substituting (3.5) into (3.6), we get

fo(E, 6) = o/(1 + K7). (3.3)
Its partial-wave projection is
fo(E) = (@/2k)Q)[1 + (1/2k)],  (3.4)

where Q,(Z) is the Legendre function of the second
kind. In the case under consideration here, the
correction to the first two lower partial waves is
sufficient. As a matter of fact, the major contribution
to the correction term comes from the S wave. For
such as the S and S-P cases, the modified Born
amplitude is written as

N
fun(E, 0) = f5(E, 0) + ;}(21 +1)
X {fe(E) — fa(E)}P(cosB), (3.5)

where, for S-wave correction, we should have N = 0,
and for S and P correction, N = 1.

Angular Distributions and Tetal Cross Sections
for Weak Yukawa Potentials

In the numerical calculation reported in this
section, we have tested the Yukawa potential given by
(3.1) for two different values of «, e.g., 1 and 3,
corresponding to two different strengths of potential.
For the case of « = 1 there exists no bound state,
whereas « = 3 is strong enough to give an S-wave
bound state. We have calculated to total elastic-
scattering cross section and angular distribution for
values of k% ranging from 0.2 to 4.0 by numerically
solving the Schrodinger equation for the above
potentials (which we designate as the exact value).
These exact values have been compared with the
corresponding quantities calculated by the Born
approximation (3.3), S-wave modified Born approxi-
mation (3.5), and the S- and P-wave modified Born
approximation (3.5) in order to examine the efficacy
of our approach—the partial-wave modification of the
Born amplitude. In calculating the exact partial-wave
scattering amplitude, we have used the corresponding
phase shifts obtained by solving the Schrodinger
equation using ‘the potential (3.1).

We first discuss the results for the case o = 1.
The total elastic-scattering cross section predicted
by the Born approximation is lower than the exact
value for low values of k2 (those up to k% = 2.0),
beyond which its predictions are almost identical
with the exact ones (Fig. 1): If the S-wave part is
modified in the way discussed above, the modified
Born approximation gives a total cross section
agreeing well with the exact value. Thus it appears
that only one lower partial-wave correction to the



580 DUTTA, WILSON, AND GREEN
T T T TTTTT] T T T 1 TTT7] T
ol ™ 10
\ EXACT VALUE o .
. BORN APPROX. — ——— — _J N
- S CORRECTION —+—«— » =
100}= \ S,P CORRECTION = 5 -
= . u
S~ \ :1 L
T — — \ . )
"""""" S—
ol T ~ X =3 ] )
';Os T\G \ 1.0 :\ i
g IO:_—\ YO\ Tl A = dg C
T E ~. . aa [
— < - 5
51— . i o
[ ey ’ 7 LS :
L = T —
ol =S 0 w
2l = B
15
= oy
= -
s 1.0 tl .
— UNITARITY CORRECTION L \\\
F TO S WAVE L .,)\4.\\“.\ B
METHOD | —.—— - NI, ]
o METHOD 3 coeeerreernenrins S NN e,
i N/D METHOD —=-++ = L e S
IL Coeaagd ol | .
o 2 5 1 2 5 1 2 F e e et
K2 Bcm
F1G. 1. The plot of total cross section against k% on log-log scale, F1G. 2. Angular distribution for the case o = I; the exact value,

showing the exact value, the Born approximation result, and its
various modifications for both the cases &« = I and o =3, k% is
dimensionless. Symbols are explained in the figure.

Born amplitude is sufficient to predict the exact
total cross section in the low-energy region for
the case of a very weak central potential. As for the
angular distribution up to the values of k* = 2.0, the
Born prediction is always lower than the -exact one
(Fig. 2). With the S-wave modification it gives values
very close to the exact. With S- and P-wave modifica-
tions it gives values almost identical to the exact ones,
except in the very low-angular region (6 < 20°),
where there is a little disagreement which minimizes
with the increase of k2. For values of k2 greater than
2.0, the predictions of the Born approximation are
fairly close to the exact values and hardly need any
modification. Next we discuss the case of o =3
when the central potential is strong enough to give
a loosely bound S-wave state. In this case the total
cross section predicted by the Born approximation is
higher than the exact value in the low-energy region
(Fig. 1). This difference gets minimized with the
increase of k% and, beyond k% = 2.0, it is not appre-
ciable. At this point we would like to draw attention
to the behavior of the Born total cross section with
respect to the behavior of the exact values with the
variation of potential strength. In the case of « =1

the Born prediction, and its various modifications. Symbols are the
same as in Fig. 1.

the Born prediction is lower, while for « = 3 it is
higher than the exact value in the low-energy region.
This difference diminishes with increasing energy,
and in the higher-energy region the Born approxima-
tion holds good.

In the case of o = 3 we see that if we modify the
S- and P-wave part of the Born amplitude in the way
discussed above, the total cross section given by the
modified Born amplitude agrees closely with the
exact one. In the case of angular distribution (Fig. 3),
the difference between the Born values and the exact
ones is significant both in the shape of the curve and
in its magnitude for k% < 1, beyond which the Born
values have the same nature but different magnitude.
But in all the cases we see that the modification of §
and P waves gives a close fit to the exact values. Thus,
in the case of a moderately weak central potential, the
first two lower partial-wave modifications of the Born
amplitude are sufficient to give a close fit to the exact
values of total cross section and angular distribution.

4. UNITARIZATION SCHEMES

In this section we consider the following question:
Given the Born amplitude, how may an amplitude be
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constructed which satisfies unitarity and some
dynamical theory? If the Born amplitude was origi-
nally constructed from a potential, then the solution is
easy: the potential is reconstructed and a Schrodinger
equation is solved. However, in some problems the
Born amplitude does not come from a potential, but is
derived from the lowest-order Feynman diagrams or
simply by postulating it as the “input potential.”
One technique w