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The dyadic formalism is applied to cosmological models, and leads to a convenient set of first-order 
ordinary differential equations. The Bianchi-Behr type of any model is shown to be constant in time, 
regardless of the state of the matter content. ~he ~ase of perfect fluid matter content is formulated. Type 
V models and Type VIII and IX models with Incoherent matter are discussed, and some consistent 
subtypes delineated. The Godel Hamiltonian for symmetric Type IX models is derived and generalized. 

I. INTRODUCTION 

In 1950 Taub l considered spatially homogeneous 
empty world models. These space-times admit locally 
a three-parameter group of motions which is simply 
transitive on each member of a one-parameter family 
of geodesically parallel, spacelike, three-dimensional 
hypersurfaces covering the manifold. He introduced a 
mathematical formalism to construct such world 
models as solutions of Einstein's field equations. 
The formalism is based on geometrical results which 
go back to Lie, Ricci, Bianchi, Fubini, and Cartan; 
it uses Gaussian coordinates based on the family of 
homogeneous hypersurfaces, and introduces a basis 
set of three linearly independent vector fields ea in 
each hypersurface. These vector fields have the prop­
erties that (a) their inner products, say yab (a, b = 
1,2, 3), are constants within any given hypersurface, 
(b) they have vanishing Lie derivatives with respect 
to the geodesic gradient vector field normal to the 
hypersurfaces, and (c) their curls in the hypersurfaces 
are given by a set of structure constants ClJac which 
algebraically characterize the group of motions. The 
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fundamental form of the 3-spaces then becomes 
da2 = Yflbea • dxeb • dx, and for the space-time ds 2 = 
da2 - dt 2• The matrix Yab is inverse to yab; i.e., it is 
formed from the inner products of the dual basis ea' 

According to Bianchi's analysis of three-parameter 
Lie groups,2 there are nine algebraically inequivalent 
types of three-dimensional spaces admitting a simply 
transitive group of motions. Within each of these 
types the yab are arbitrary, while the C~c are determined 
up to a nonsingular constant affine transformation. 
Assuming the "Bianchi type" of the hypersurfaces to 
remain the same throughout the entire four-dimen­
sional manifold, the C:c can be taken as a canonical 
set of constants, ones and zeros. Einstein's field 
equations give in the most general case a very compli­
cated system of six coupled second-order ordinary 
differential equations for the yab as functions only of 
the time coordinate t that labels the hypersurfaces. 

Heckmann and Schiicking3 have reformulated 
Taub's method for spatially homogeneous universes 
with incoherent matter. Previously known special 
world models of this type are Einstein's static universe, 
Friedmann's isotropic cosmologies, and Godel's 

2 I. Bianchi, Mem. Soc. Ital. Sci., Ser. IlIa, 11 (1897). 
3 O. Heckmann and E. Schlicking, Gravitation: An Introduction 

to Current Research, L. Witten, Ed. (John Wiley & Sons, Inc., New 
York, 1962), Chap. 11. 
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rotating universe. Heckmann and Schiicking refer to 
this and other previous work, and find a few addi­
tional solutions containing expansion and shear, but 
no rotation. Behr4 has studied certain more general 
cases. 

Behr5 has introduced a classification of spatially 
homogeneous cosmologies differing somewhat from 
that based on Bianchi type. Let Ail = tCfkEjkl. The 
vanishing or nonvanishing of A[ ill, and the rank and 
absolute value of the signature of A(il) are invariant 
under constant affine transformation. By these 
criteria 10 inequivalent types are distinguished. 
Specializing the basis ea

, and taking account of the 
Jacobi identity, Ail can be put into the form 

A" ~ (~n : :). wheee ne ~ 0, 

TABLE I. Bianchi-Behr classification of homogeneolls cosmo-
logical models. 

Model type n2 Sign a Sign b Sign c Bianchi type 

I 0 0 0 0 I 
II 0 + 0 0 II 

VIIo 0 + + 0 vn 
VIo 0 + 0 VI 
IX 0 + + + IX 

VIII 0 + + VIII 
V + 0 0 0 V 

IV + + 0 0 IV 
VUh + + + 0 VII 
VIh + + 0 VI, III 

In Table I we summarize the Bianchi-Behr types in 
terms of these parameters. In two cases, denoted by 
Behr as Types VII< and VII", the type is subclassified by 
a continuous invariant parameter h = n2/ab. Behr has 
further obtained coordinate components of the 
specialized ea's expressed in terms of a, b, c, and n, so 
that the invariant differential form ea • dx is explicitly 
known for each of the cosmological models. 

In the present paper we recast the cosmological 
problem in terms of the dyadic formalism. A super­
ficially quite different mathematical formulation 
results: In particular, we now deal with sets of first­
order differential equations. This, plus the fact 
that all quantities in this formalism have immediate 
physical interpretation, gives rise to the hope that 
further exact solutions or at least further easily 
analyzable subcases can be found. 

4 C. G. Behr, Z. Astrophys. 54, 268 (1962); 60, 286 (I 965); Astron. 
Abhandl. Hbg. Sternwarte 7, 249 (1965). 

• C. G. Behr (to be published). 

We recapitulate the general dyadic approach to 
general relativity in Sec. II, and then specialize the 
equations to the cosmological problem. In Sec. III 
the Bianchi-Behr classification is found to emerge 
naturally in the dyadic formalism. We prove that­
unless a singular state occurs-the cosmological 
principle alone implies constancy of the Bianchi-Behr 
type (even to the parameter h) of the homogeneous 
spacelike hypersurfaces throughout space-time, re­
gardless of the state and evolution of the matter con­
tent. We consider the matter content in Sec. IV, and 
derive dyadic expressions for the accelerati on, rotation, 
shear, and expansion of the matter congruence in the 
case of perfect fluid. As an example of the dyadic 
approach, the equations for Type V models with 
incoherent matter are explicitly discussed in Sec. V. 
In Sec. VI we consider cosmologies of Types VIII 
and IX with incoherent matter, and are able to 
recover and generalize some elegant results previously 
announced without proof by Godel. 

II. DYADIC EQUATIONS 

As a physical theory, 3 + 1 Riemannian geometry 
takes a convenient form as four asymmetric first-order 
dyadic differential equations6•7 : 

Va - (5 + w x S - S x w) + (9. + w x Q) x 1 

= S . S - n x S - S x n + QQ - (Q2)1 - aa 

+ A + T + Hp - 2 Tr T - A)I, (1) 

vn + S x V = -2aQ + (a· Q)I + B + t x I, (2) 

N + S* . N = S*T X (V + a) 

+ [(V + a)· (n - w)]I, (3) 

V x N = -lNT ~ N + E + (Q. S*) x I, (4) 

where 

S* = S - (n - w) x I, S*T = S + (n - w) x I, 

(5) 
and 

- E = A - T + :1(Tr T - 2p - A)I 

+ §S ~ S + nQ + Qw + wQ. (6) 

This completely general formulation is based on an 
arbitrary timelike reference congruence kinematically 
described by three-vectors of acceleration and vorticity 
a and Q, and by a symmetric rate-of-strain dyadic S. 
The trace of S is the expansion, the trace-free part 
the shear, of the reference congruence. The 3-space 

6 F. B. Estabrook and H. D. Wahlquist, J. Math. Phys. 5, 1629 
(I 964). 

, H. D. Wahlquist and F. B. Estabrook, J. Math. Phys. 7, 894 
(1966). 
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orthogonal to the timelike reference congruence is 
spanned by an orthonormal spacelike triad reference 
vector frame having angular velocity wand nine triad 
rotation coefficients N. It is a quotient space (VV 
unless Q = 0; in this case the antisymmetric part of 
Eq. (4) is a familar differential identity implying a 
3-metric, Eq. (6) is a Gauss equation for this induced 
metric, and E, its Einstein curvature dyadic, satisfies 
the 3-dimensional Bianchi identity V· E = O. The 
operator (') is differentiation along the timelike con­
gruence; the operator V is covariant differentiation in 
the quotient space. The usual vector operations· and 
x serve conveniently to make explicit the consequences 
of the signature of space-time, which here leads to a 
positive-definite quotient space. 

Of the 36 first-order equations in (I), (2), (3), and 
(4), 20 serve to define the Riemann tensor compo­
nents8 : T, t, and p are, in Einstein's theory, identified 
as the symmetric stress dyadic, momentum density 
vector, and energy density (in relativistic units); A 
and B are symmetric and traceless, respectively, the 
so-called "electric" and "magnetic" local components 
of the Weyl tensor. A is the cosmological constant. 

The timelike reference congruence we adopt in the 
following, to reduce the space-time of a world model, 
is the normal congruence of the homogeneous sub­
spaces. The cosmological principle requires any scalar 
formed from the induced metrical structure on any 
of these, or from its second fundamental form, or 
from the timelike normal congruence to be constant 
in the 3-space, and so not to allow any geometric or 
kinematic means of intrinsic identification of the 
points in the 3-space. Thus first the angular velocity 
of the reference congruence Q = 0; moreover, since 
the acceleration a of this congruence is then express­
ible as the gradient of a scalar potential cp,7 and 
since all scalars are allowed to be functions only of 
time, we immediately have also a = O. This is the 
dyadic proof that the reference congruence is geodesic; 
i.e., that the homogeneous subspaces are geodesically 
parallel. (In general, this reference congruence will 
not coincide with the world lines of the matter.) Under 
these circumstances the dyadic formulation becomes 
quite simple: The remaining variables of the problem 
are just the symmetric rate-of-strain dyadic 5 of the 
reference congruence (which is here also the second 
fundamental form of the 3-spaces) and the asymmetric 
Ricci rotation dyadic N that describes the intrinsic 
metric geometry of the 3-spaces. 

8 There is a slight notation change here from Refs. 6 and 7. There 
the cosmological term in the field equations, if any, was incorporated 
in Tllv and so in T and p. Here we write it explicitly, and T, t, and p 
describe just the local physics. 

In the world models considered in the present paper, 
there is always the possibility of three intrinsically 
defined orthonormal reference vector congruences in 
the homogeneous 3-spaces. Adopting these, the com­
ponents of any dyadic quantity appear as intrinsic 
scalar fields. In Ref. 6 we defined a differentiation 
operation D which operates only on the components 
of dyadic quantities. As all intrinsic scalars are to be 
constant in the 3-spaces, the differentiation operator 
D applied to any quantity gives zero. So to obtain the 
covariant 3-space derivatives of any vector V or 
dyadic M we use the identities6 

VV = DV - N x V, (7) 

V • M = D . M - NT X M - 2n • M, (8) 

V x M = D x M + (Tr N)M 

- NT. M - NT~M, (9) 

putting, henceforth, DV = 0 and DM = O. We use 
the notation that N = NS - n x I where NS is 
symmetric. NT = NS + n x I. 

From (2), we can solve for Band t in terms of N 
and 5: 

B - t x 1 = -(Tr N)5 + NT. 5 + NT~5. (10) 

This equation is traceless. Equation (4) gives E in 
terms of N: 

E = (Tr N)N - NT. N - !NT~N, (11) 

the antisymmetric part of which is an identity which 
must be satisfied by N, 

N x N = 0, (12) 
or 

F·n = 0, (13) 
where we define 

F = NS - (Tr N)I. (14) 

n is thus an eigenvector of the symmetric dyadic 
F, with zero eigenvalue. (This is the dyadic guise taken 
by the Jacobi identity of the underlying 3-parameter 
isometry group!) We henceforth use F and n in 
preference to N. The trace of (6) gives p, and from 
(II) the 3-space curvature is described by 

E = -2F· F + (Tr F)F - n x F + F x n 

- HHTr F)2 - F: F + 2n2]1. (15) 

The dyadic A is now given, in, terms of F, n, 5, and T 
by the trace-free part of (6). 

There remain six equations in (1) and nine equations 
in (3), which give the time behavior of the variables 
5, F, and n. These are the first-order differential 
equations which state the mathematical problem at 
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hand, solutions of which are relativistic homogeneous 
cosmologies: 

S+wxS-Sxw 

= -2T - (Tr S)S - 2F· F + (Tr F)F - 0 x F 

+ F x 0 + [Tr T + iA + !(Tr S)2 - !S:S 

+ !F: F - ~(Tr F)2 + ~n2]1, (16) 

F + w x F - F x w = S· F + F· S - (Tr S)F, 

(17) 

it + w x n = -0' S. (18) 

In these equations w may be chosen arbitrarily 
(Ref. 6) and, as we will see, T is to be given. by lo~al 
physical considerations to complete the differentIal 
set. 

We do not labor the essential equivalence of the 
dyadic approach and the approach described in the 
Introduction (Ref. 5), but this equivalence is perhaps 
obvious after one recognizes the algebraic identity of 
the components of the dyadic N - (Tr N)I = F -:­
o x I and the tensor density A il belonging to the basIs 
here being used. In the dyadic approach this vector 
basis u" in the 3-spaces is once and for all time taken 
orthonormal, so that for it the inner products yab = 
diag (l, 1, 1) everywhere, rather than being functions 
of time. Moreover, the field equations are cast as 
first-order equations for the variables in N, which 
now are functions of time, together with the variables 
in S, the components of the second fundamental form 
of the immersed homogeneous 3-spaces. In the present 
formulation, the final integrations to obtain the metric 
explicitly as a function of holonomic coordinate~ are 
deferred until all the triad Ricci rotation coefficIents 
N are known-the essential mathematical problem 
being the determination of these latter. Lo.cal phy~ical 
quantities of interest are always algebraIc functIOns 
of Sand N. We will only briefly discuss such a final 
integration to determine a metric form in the next 
section. 

III. CONSERVATION OF BIANCHI-BEHR TYPE 

We may now make a choice of intrinsic triad 
reference vectors in each successive homogeneolls 3-
space. Such a choice determines w. The choice which 
usually appears to be most convenient for the present 
problem is to everywhere diagonalize F; furthermore, 
using Eq. (13), we choose the direction ofn: 

(

a ° 0) 
F"b = 0 b 0 , nil = (O,O,n), nc = O. (19) 

o ° c 

Inserting this into (17) and (18), we write in ~om­
ponents first the differential equations for the eIgen­
values of F and the magnitude of n: 

a = (S11 - S22 - S33)a, (20) 

b = (-S11 + S22 - S33)b, (21) 

C = (-S11 - S22 + S33)c, (22) 

1i = -Saan, (23) 

and next the equations which give w: 

wln = S23n, (24) 

w2n = -Sl"j'l, (25) 

w1(b - c) = S23(b + c), (26) 

w2(e - a) = Sal(e + a), (27) 

waCa - b) = S12(O + b). (28) 

We may from the form of Eqs. (20)-(23) immedi­
ately draw the conclusions that in any given cosmo­
logical solution, irrespective of the physical content 
(described by the stress T, which we have not yet 
specified), (a) either n vanishes or does not .vanish for 
all time, and (b) that a, b, and c are each eIther zero, 
positive, or negative and remain so for all time, unless 
a singularity occurs and our differential analysis fails. 
Thus we arrive precisely at the type of classification 
scheme already given by Behr (Table J). Type VI" 
and VII" homogeneous 3-spaces are further classified 
by the value of h, where 

h = n2/ab. (29) 

Bianchi Type III is the subcase of Type VI" when 
h = -1. From Eqs. (20)-(23) we quickly find 

h = 0 (30) 

so that, again, this parameter classifies globally such 
cosmological models. 

We wish to call attention to the structure we have 
found for the differential equations for a, b, c, and 
n-that the setting of any of these equal to zero 
implies that its first, and higher, derivatives are zero, 
and hence that it remains zero so long as all quantities 
are bounded. By setting such a variable equal to zero, 
we consistently reduce by one the number of differ­
ential equations in the set, and so have a classifiable, 
distinct subtype of cosmological model at hand for 
solution. Again, it may happen that if several variables 
of a set (for example, for perfect fluids, the three 
variables in t) are simultaneously set equal to zero, 
that an equal number of the first-order differential 
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equations are identically satisfied, and that the set of 
relations continues to remain zero as time progresses. 
Such relations have been discussed by Levi-Civita,9 
who denotes them "invariant relations" or "invariant 
sets" with respect to the set of n ordinary first-order 
differential equations being considered. Such relations 
serve to separate and classify the congruence of tra­
jectories describing the general solution, in the n­
dimensional space of dependent variables, by means 
of subspaces which are themselves not crossed by 
trajectories. We will denote such variables and sets 
as IR variables and IR sets. We regard the classifying 
of solutions of a complete set of first-order differential 
equations as equivalent to the recognition of IR 
variables and IR sets. 

We further wish to remark that the present result, 
the conservation of Bianchi-Behr type, is a conse­
quence of the cosmological postulate without reference 
to the field equations (i.e., irrespective of the state of 
the matter content). It is purely a consequence of the 
3 + 1 Riemannian geometry and is contained pre­
cisely in our dyadic Eq. (3). The set of relations (3) is 
not at all easy or natural to express in more conven­
tional tensorial terminology, and yet is vital for the 
completeness of the total set of relations in Eqs. (1), 
(2), (3), and (4), that they together describe the 
geometry of 3 + 1 Riemannian space-time. [t is 
an advantage of the dyadic formalism that the set in 
Eq. (3) is explicit. 

So, then, adopting the Bianchi-Behr classification, 
we are left with the problem of integration of complete 
first-order sets consisting of six equations (16) and of 
four equations (20)-(23), where from one to four of 
the latter vanish identically for any given type. [In 
some cases, however, this situation may be improved 
upon further by a different choice of It) in Eqs. 
(l6)-(18)-we will illustrate this in Sec. V.] After 
integration of the first-order set giving F, D, It), and 5, 
the local physics is everywhere known for the model. 
However, it sometimes may be desired to go further: 
to obtain an explicit space-time metric as in Sec. I. 
Indeed we already have at hand a set of coordinate 
components of invariant triads' ea for each Bianchi 
type (Ref. 5) (these are functions of particular canon­
ical coordinates xa , where (J. = 1,2, 3, and constant 
structure parameters, say F~lJ and noa , or, if specialized, 
just ao, bo, co, and no)' But now how are their inner 
products to be found? We introduce a matrix of 
affine transformation C~b connecting the invariant 

9 T. Levi-Civita and U. Amaldi, Lezioni di Meccanica Razio­
nale (Nicola Zanichelli, Bologna, 1926), Vol. II, pp. 339-353; cf. 
also J. A. Schouten, Ricci-CalclIllIs (Springer-Verlag, Berlin, 1954), 
p.215. 

basis ea and the orthonormal basis ua, 

ea = C~bUb, so ea. eb = yUb = C~cC~ijCd. (31) 

tia = 0 by definition, and ea = -It) x ea - 5 . ea 

because the ea have the property of being comoving 
with the reference congruence (Ref. 7). Thus, for 
the unfolding affine matrix C~b and its transposed 
inverse C~b we find the equivalent differential equations 

C~b - €bCdWdC~C + SbCC~c = 0, 

C~b - €lJCdWdC~c - SbCC~c = 0, (31') 

Idet C~bl' = -(Tr 5) Idet C~bl. 

It is these coupled linear equations which finally must 
be integrated, so that the Yab(t) can be calculated. 
Nine integration constants are at first sight required, 
but the solutions C~b(t), as is easily shown from 
Eqs. (17) and (18), will satisfy tensor-density-type 
transformation equations under the affine change of 
basis: 

nb(t) = C.~noa' rb(t) = Idet C~fl C~uCdbF~d. (32) 

Thus, knowing the constants nOa and F~d for a given 
Bianchi-Behr type, Eq. (32) fixes a number of the 
integration constants. The extent to which the integra­
tion constants remain arbitrary expresses the so-called 
automorphism group of the invariant basis. 

In practice, since we usually take F diagonal, and 
D aligned, and since the canonical 3-space metrics 
given by Behr in Ref. 5 are similarly specialized in the 
forms F~b = diag (ao, bo, co) and nOn = (0, 0, no), the 
arbitrariness allows the C~b to be taken quite special, 
ab initio. For example, in Type IX, we may write 
the matrix of C~b as just 

o 

o \ 

;J 
o 

(

/3 x 3 orthog_) (a-~ 
x onal matrix: 0 

3 parameters 0 0 

where f = (a b ciao bo co)~ Idet orthogonal matrix I-I, 
and there are but three functions to be found from 
the last integration. 

IV. THE MATTER CONTENT: PERFECT 
FLUID, INCOHERENT MATTER 

We consider now the choice of matter content for 
these cosmological models. We already have, from 
Eqs. (6) and (10), the local energy and momentum 
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densities p and t (as seen by an observer whose cOn­
gruence is the reference congruence with a = n = 0): 

p = !:{(Tr S)2 - S:S - F: F + HTr F)2 - 6n2 
- 2A}, 

(34) 

t = t{F x S - (Tr S)n + 3n· S}. (35) 

Furthermore, we may directly calculate from these 
(or use the contracted Bianchi identities in dyadic 
notation) the conservation laws, 

To calculate these, we expand Eq. (40) in the ortho­
normal reference frame, thus introducing its kinematic 
quantities S, a, and n-the last two, however, are 
zero in the present case. We use Eq. (7) to calculate 
VV, and find V from (36) and (37): 

V+wxV=V.FxV+p'VV- V2n 

- V· S + V· S . VV - [/j/(p + p)]V. (42) 

The final result is 

p = -(TrS)p + T:S + 2n·t, (36) a = - [y3P/(p + p)]V, 

i + w x t = - (Tr S)t - t . S - 3D • T 
+ (Tr T)n - F x T. (37) 

It remains to specify the expression of the stress 
dyadic T in terms of t and p, for insertion in Eq. (16). 
For a perfect fluid, for example, we have 

T = -pi - (p + p)-ltt, (38) 

where p is the pressure. A noteworthy result of this 
relation is that Eq. (37) then becomes such that t = 0 

implies i = o. We recognize the same structure as we 
met in Eqs. (17) and (18): t is an IR set, and subtypes 
with t = 0 may be formulated for cosmologies with 
perfect fluid matter content. 

The velocity 4-vector of a fluid is the timelike 
eigenvector of its energy-momentum tensor. If the 
reference tetrad components of this unit 4-vector are 
written as A' = y(1, V), where y = (I - V· V)-~, 
we define the fluid 3-velocity V. In a proper frame 
moving with this velocity, a proper observer will 
measure pressure p and proper density, say l'P' From 
(38), l'P and V are then found to be related to p and 
t by 

(39) 

It is usual in cosmology to describe the kinematics of 
the matter content in the comoving or proper frame; 
i.e., by the acceleration 1,aY' rotation j'Qrs> shear 
1,a,S' and expansion 1,e of the A' congruence: 

1,a, = Ar;sA
s
, pQrs = A[r;s] + 1,a[rAs] ' 

[,ars = A(r;s) + pa(rAs) -L'()(grs + ArA.}, pe = A~r' 
(40) 

We can describe this kinematics of the matter con­
gruence in dyadic language, and also use clocks 
moving on the~eference congruence, by introducing 
~ectors a and n, a symmetric dyadic a, and a scalar 
e according to 

( -V -) r. (0 -n x V) 1,ar = Y -a· ,a, l'~~rs = Y - - , n x V -n x I 

(
V . a . V - a . V) -

pars = y _ _ ,pe = yeo 
-V·a a 

(41) 

n = -! V . F - !n xV, 

a = HVn + nV) - 0 • VI + HV x F - F x V) 

+ S - [y4pj(p + p)]VV - kO(1 + y2VV), 

ii = -2n· V + Tr S - V· S . V - [y2V2jJj(P + p)]. 

(43) 

To repeat, these are the quantities which describe the 
proper kinematics of the matter congruence in 3-
dimensional language based on the reference con­
gruence. Using (39), they are calculable from S, F, 
0, and p. p must be given by local physical consider­
ations to complete the first-order set of equations for 
these variables. 

The following may each be shown to be an IR 
set or variable: V; y; V· F; t· F; 0 x V; t· F. t; Q. 
For example, 

n + w x n = [S + {n . V + V . S . V - Tr S 

- pj(p + p)}l] • Q, 

y = -v· s· Vy - [V2y3pj(p + p)], 

(t· F . t)· = 3(20' V - Tr S)t. F· t. 

(44) 

Thus the presence or absence of any of these may be 
used to classify cosmologies with perfect fluid content. 
We have not, however, found any JR sets involving 
the matter shear and expansion a and 0. When 0 = 0, 
the last of Eq. (44) leads immediately, with Eqs. (20)­
(22), to a first integral of angular momentum 

t· F· t/(det F)3 = const. (45) 

As an example of completion, we consider now, and 
henceforth in this paper, the case of incoherent (or 
dustlike) matter, p = O. The right sides of the first­
order differential set of equations [(17)-(18)] can be 
shown to be analytical functions of the dependent 
variables when p [given by Eq. (14)] is nonzero. The 
fundamental theorem for such a set guarantees the 
existence, uniqueness, and analyticity of solutions so 
long as all quantities remain finite. Thus the mathe­
matical requirements which we previously invoked in 
discussing invariant relations are clearly satisfied. In 
this incoherent case, we have, naturally, the density 
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p as an I R variable: 

p = {-Tr S - V • S • V + 20 • V} p. (46) 

From (44) and (46) we find an integral 

y3V . F • V / p = const. (47) 

In vector-free cosmologies (n = 0), as we will see 
in Sec. VI, this may be combined with the integral of 
angular momentum to yield a local conservation law 
for energy. We will in the next two sections consider, 
respectively, Type V, and Types VIII and IX, with 
p = 0, to illustrate these various relations. 

V. TYPE V COSMOLOGIES 

To illustrate the above considerations, let us put 
F = ° and p = 0. This we know that we may con­
sistently do, since F is an IR set from Eq. (17). Let us 
now choose w so that S is everywhere diagonal. The 
three off-diagonal equations in (16) give w. We are 
left with six first-order differential equations for 
solution: the diagonal equations in Eqs. (16) and 
(18). 

For incoherent matter, with A = 0, the right­
hand sides of these equations are homogeneous of the 
second order in the variables S11 , S22, S33' n1, n2 , n3 • 

The only nonquadratic terms are those from the 
matter tensor: T = - p-1tt, t and p being quadratic 
functions of the variables, according to Eqs. (31) and 
(32). The equations nevertheless appear impossible 
for explicit solution. Rotation is in general present. 
We note that the integrals (45) and (47) become 
empty for such a special Bianchi-Behr type. 

The rotation-free case occurs when the IR vector 
V x 0 vanishes. Now we find w = ° and V and 0 to 
be eigenvectors of S-we take them to be in the 3-
direction. With the new variables fI = S11 + S22 + S33 
to describe the expansion and a = S11 - S22 and 
T = -S11 - S22 + 2S33 to describe the shear (of the 
reference congruence!), we have a set offour equations 
for solution: 

ci' = -fla, 

+ = -fiT + p-lT2n2 , 

o = -!fl2 - tp-lT2n2 + ~A - ia2 - iT2 + ~n2, 
n = -tfln - tm, 

where 

(48) 

4p = ffl2 - la2 - !T2 - 6n2 - 2A. (49) 

One first integral has been found: n = CV(1 - V2)-!, 
where 2p V = Tn and C = const. 

We note that a and T are separately IR variables. 
The subcase a = ° is, interestingly, of Petro v type D. 
The subcase T = 0, which is the case when all of 

t = 0, is especially simple. Now two integrations may 
be performed, and in the remaining equation the 
substitution n = R-l leads immediately to the "gen­
eralized Friedmann equation" given by Heckmann 
and Schucking (Ref. 3, p. 445). Indeed, from Eq. (11) 
we have the curvature of the 3-spaces to be E = -n21, 
isotropic for all Type V models, so R is of course seen 
to be the Gaussian curvature. 

VI. TYPE VIII AND IX COSMOLOGIES 

In Eqs. (24)-(28) we insert 0 = ° and p = ° and 
solve for w. The equations for a, b, e are (20)-(22); 
for the components of S we refer to (16). Let us 
denote these last by 

(50) 

The components oft are given by (35): 2tl = (b - e)a, 
and 2 cyclic permutations. The complete set of 9 
first-order equations for a Type VIII or IX cosmology 
with incoherent matter is 

d = (cp - x - 1p)a 

together with 2 cyclic permutations; 

1> + 2T2(e + a)/(e - a) - 2v2(a + b)/(a - b) 

= - (cp + x + 1p)cp + (-a + b + e)a 

+ tp-1a2(b - e)2 - tp-lT2(e - a)2 

- tp-1v2(a - b)2 + !A 
+ tCcpx + x1p + 1pcp - a2 

- T2 - v2) 

(51) 

+ !Ca2 + b2 + e2 
- 2ab - 2be - 2ea) (52) 

together with 2 cyclic permutations; 

ci' + 2vT(be - a2)/(a - b)(e - a) 

+ a(x - 1p)(b + c)/(b - e) 

= !p-1vT(e - a)(a - b) - (cp + x + 1p)a (53) 

together with 2 cyclic permutations. 
By cyclic permutations we mean simultaneous 

permutation of·the 3 triplets (abc), (cpX1p), and (aTv). 
We recall from (34) that 

4p = 2(cpx + x1p + 1pcp - a2 - T2 - v2) 

- Ha2 + b2 + e2
) + ab + be + ca - 2A. (54) 

As we have seen, there are precisely two first inte­
grals of these equations, which can be found because 
of the special form of the matter terms. The first of 
these is a proper energy integral, 

8p/(yabc) = 2H, (55) 
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before, is the Lorentz factor relating interval along 
the matter congruence to interval along the reference 
congruence. 

The second integral expresses conservation of 
angular-momentum density in the proper frame: 

a(b - c)2a2 + b(c - a)2T2 + c(a - b)2V2 

= iK2H2a3b3c3, (56) 
where K = 0. 

We now specialize to the symmetric case treated by 
GOdepo and Behr4 : It is clear from the above that any 
two off-diagonal terms in S, say T and v, are an IR 
set, and by setting them simultaneously equal to zero 
we consistently reduce the set of simultaneous 
differential equations by two, i.e., T and v then stay 
zero. Now t and V are only in the I-direction, and we 
are left with just 

a + (x - 1jJ)a(b + c)/(b - c) = -(~ + x + 1jJ)a, 

(57) 

¢ = - (~ + x + 1jJ)~ + (-a + b + c)a 

+ ip- I a2(b - c)2 + tA 
+ H ~x + x1jJ + 1jJ~ - a2) 

+ Ha2 + b2 + c2) - !(ab + be + ca), 

x = 2a2(b + c)/(b - c) - (~ + x + 1jJ)x 

+ (a - b + c)b - ip-Ia2(b - c)2 + tA 
+ H ~x + x1jJ + 1jJ~ - a2) 

+ }(a2 + b2 + c2
) - Hab + be + ca), 

1jJ = -2a2(b + c)/(b - c) - (~ + x + 1jJ)1jJ 

+ (a + b - c)c - tp- I a2(b - C)2 + lA 
+ .~ (~x + x1jJ + 1jJ~ - a2) 

+ ~(a2 + b2 + (2
) - l(ab + be + ca), 

d = (~ - x - 1jJ)a, } 

~ = (-~ + x - 1jJ)b, , 

c = (-~ - x + 1jJ)c. 

1 

(58) 

(59) 

Eq. (57) may be omitted, and a eliminated from (58) 
by virtue of the integral (56), which now reads 

a(b - cra2 = lK2H2a~b~c3. (60) 

We will write (55) again as 

8p/abc - 2yH = 0, (61) 
or explicitly, 

4(abc)-I[~x + X1jJ + 1jJ~ - iK2H2aWc3(b - C)-2 

- }Ca2 + b2 + c2
) + Hab + be + ca) - A] 

- 2H[1 + K 2bc]} = 0. (62) 

10 K. Godel, Proe. Intern. Congr. Math., 1950, Vol. I, pp. 175-181. 

Scrutiny of this last expression has enabled us to 
discover a connection between the present formulation 
of the symmetric Type VIII and IX cosmologies, and 
the Lagrangian announced by Gode1.1o If we introduce 
variables Pa and qa (IX. = 1,2, 3) by setting 

ql = (bC)-I, and cyclic permutation, (63) 

PI = 2qt(x + 1jJ)rJ11 and cyclic permutation, (64) 

where 

q = qIq2q3' 

the expression (62) takes the functional form 

Je(qa, Pa' T, -H) 

== 2q-!Wqlq2PIP2 + q2q3P2P3 + q3qIP3PI) 

- l(q;p; + q~p~ + q;p~) 
- lK2H 2q2q3(q2 - q3)-2 - 2Aq 

(65) 

- l(q; + q~ + qD + (qlq2 + q2q3 + q3ql)] 

- 2H[I + K2qll]~ = 0, (66) 

and this is an "energy equation," in the terminology 
of Synge,u for a symmetric canonical formulation of 
our set of first-order equations (58) and (59); that is, 
we take as four canonically conjugate pairs {qi' Pi} == 
{ql' PI; q2, P2; q3' P3; T, -H}; the equations 
aJe/api = Ifi and aJe/aqi = -j; (. being a total 
derivative with regard to an unspecified independent 
variable, say w, again in Synge's notation) give first 
(i = I, 2, 3) exactly (58) and (59) and also give, 
(i = 4), 

2[1 + K2qll]} = t = y and fI = 0. (67) 

Thus we see that IV is to be interpreted as proper time 
along the reference congruence (cosmological time t); 
T is interpretable as the ignorable coordinate con­
jugate to the energy constant H. 

Godel's Lagrangian is apparently the same as the 
above symmetric Hamiltonian formulation, if the 
sign of the "kinetic energy" terms (those quadratic 
terms involving the Pi) is reversed, and the ifi used 
instead of the Pi' Such a formulation, however, 
obscures the interpretation of the' differentiation, the 
fact that numericalIy JC = 0, and the constancy of H 
(which indeed is apparently normalized to the value 
+ I by Godel). We also have included the cosmological 
constant A. 
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A closed form has been derived for the function rx,(NML I a, r) introduced by L6wdin for two-center 
integrals in molecules and solid states. This expression is general and applied to all values of I, L, and M. 

I. INTRODUCTION 

Usually, two- or multiple-center integrals are in­
volved when we deal with the structure and properties 
of systems of atoms, molecules, and complexes. 
Expressions for quantities such as electronic energy, 
molecular-dipole and -quadrupole moments, fine- and 
hyperfine-coupling constants, transition probabilities, 
scattering coefficients, nuclear-magnetic shielding 
constants, spin-Hamiltonian parameters, and various 
other quantities, require the evaluation of electronic 
integrals of one- and two-electron operators. These 
integrals are computed with the help of molecular 
orbitals formed out of atomic orbitals with the origin 
at different centers. The methods of evaluation of such 
integrals are based on either (a) the classical expansion 
in spherical harmonics, first used by Coolidge l and 
subsequently developed by Landshoff,2 L6wdin,3 
Barnett and Coulson4 or (b) the transformation of the 
integrand into a prolate-spheroidal coordinate system, 
as developed by Roothan, Ruedenberg, Jaunzemis, 
Wahl, Cade, and others.5 The latter method is 
convenient only when the atomic orbitals involved in 
the integrals to be in the form of Slater-type orbitals 
(STO). Using Slater-type orbitals, a number of closed 
forms for two-center integrals involving one- and two­
electron operators have been described by Roothan 
et af.5 and Geller and Griffith.6 These methods are not 
suitable when numerically tabulated Hartree-Fock 
functions or analytical wavefunctions, which cannot 
be expressed as sums of exponentials, are used for the 

• Supported in part by National Science Foundation and Ad­
vanced Research Project Agency. 

t Present address: Department of Physics, Purdue University, 
Lafayette, Indiana. 
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computation of two-center integrals. In such cases one 
has to use L6wdin's IX-function method. 7 This method 
is of type (a) and uses an expansion of the atomic 
orbitals (say <PNLJ1) about one center in terms of 
functions measured from the other center. Conse­
quently a two-center integral is reduced to a sum of 
one-center integrals which can be easily evaluated. 
The expansion of the wavefunction around one center 
in terms of functions about the other center leads to a 
sum of products of a radial part [designated as an 
IX function, that is, IXz(NLM I a, r), "a" being the 
distance between the two centers] and an angular 
part Yilf(e, rp), where 1 runs from zero to infinity and 
r, e, and rp are the coordinates with respect to the 
new center about which the wavefunction <PSLJ1 is 
expanded. This means that a wavefunction involving 
a definite angular momentum L about first center is 
equivalent to a combination of various angular 
momenta on the other center. The IX-function tech­
nique of L6wdin has recently been used by Ikenberry 
and Das8 for the evaluation of nuclear magnetic 
shielding constants in alkali halides, by Knox9 for the 
calculation of excited-state wavefunctions, excitation 
energies, and oscillator strengths for argon, and by 
SmithlO for the investigation of the gfactor of hydrogen 
and alkali atoms trapped in rare gas solids. The same 
techniq ue has also been adopted recently by usH for 
the investigation of the overlap contributions to the 
zero-field splitting parameters D and E occurring in 
the spin Hamiltonian of paramagnetic ions. It has 
been found in these cases that the IXz(NLM I a, r) 
functions are required not only for a few of the 
smaller values of I, L, and M considered earlier by 
L6wdin, but also for higher values of I, L, and M. 
The lack of availability of the algebraic form of 
IXz(NLM I a, r) for higher values of I, L, and M is 

7 P.-O. L6wdin, Advan. Phys. 5, I (1956). 
8 D. Ikenberry and T. P. Das, J. Chern. Phys. 43, 2199 (1965); 

Phys. Rev. 138, A822 (1965). 
9 R. S. Knox, Phys. Rev. 110, 375 (1958). 

10 D. Y. Smith, Phys. Rev. 131,2056 (1963). 
11 R. R. Sharma, T. P. Das, and R. Orbach, Phys. Rev. 149, 257 

(1966); R. R. Sharma, T. P. Das, and R. Orbach, Phys. Rev. 
ISS, 338 (1967). 
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particularly felt in the calculation of properties of 
molecules and solids involving d and f electrons. The 
purpose of this article is to present a closed and general 
expression for the IX function which applies to any 
values of I, L, and M. Some of the standard mathemat­
ical relations used in this work have also been listed. 
A general asymptotic expression for the IX function, for 
small values of r valid for all values of I, L, and M, 
has also been presented. Finally, we have substituted 
different values of I, L, and M in our general ex­
pression of the IX function, and the results are compared 
with Lowdin's earlier expressions as a check of the 
correctness of our formula. It should be remarked 
that Coulson and Barnett's s-function technique is 
really a special case of IX functions, appropriate to the 
case of hydrogenic wavefunctions-that is, those 
expressible as a single exponential. 

II. DERIVATION OF A CLOSED 
FORM FOR THE 0( FUNCTION 

We are interested in deriving explicit forms for the 
IX/ which hold for general values of I, L, and M. 
Lowdin7 had derived such expressions for a few of the 
smaller values of I, L, and M. According to our defi­
nition of IX/(NLM I a, r), we write 

<I>(NLM I R, e, <1» = L (1/r)IX/(NLM I a, r)YzllI(e, cp), 
7 

(1) 

where <I>(NLM I R, e, <1» is the wavefunction of an 
electron on the atom B to be expanded at the center 
A which is at a distance "a" away from the center B 
(Fig. 1). The polar coordinates r, e, and cp are the 
coordinates of the electron with respect to the center 
A as origin, while R, e, and <I> are the coordinates 
with respect to B as origin, the axes being disposed in 
the manner shown in Fig. 1. 

According to Lowdin's definition7 of the IX function, 
which we denote by IX~(NLM I a, r), we have 

<I>(NLM I R, e, <1» 

=/(LJ1L.,1X/(NLM a,rPi cos . ' , ~ 0 I) 11 ( e){COS M cp 
I~O sm Mcp 

(2a) 

FIG. I. The systems of axes used for the expansion of a wave­
function centered at B in terms of the O(,(NLM I a, r) functions 
centered at A. 

where 

k (2L+l(L-M)!)i (2b) 
LJl = €M~ (L+ M)! ' 

€o = 1, 

€v = 2 (v 2 1), 

(2c) 

(2d) 

and Lowdin employs real spherical harmonics instead 
of the usual complex ones that we have used. 

We can relate IX/ defined by (1) to Lowdin's definition 
IX? [Eq. (2)] by the relation 

IXzCNLM I a, r) = K1LllrlX~(NLM I a, r), (3a) 
where 

K - (2L+ 1)(L- M)!(l + M)!)! (3b) 
/LJ1 - (21 + 1)(/ - M)!(L+ M)! . 

The expansion of <I>(NLM I R, e, <1» about A 
yields7 

IX~(NLM I a, r) = (27T/€Jl)k;J11"UoYL(R)/R)Pi1(cos e) 

x P/M(COS e) sin e de, (4a) 

where/.vL(R) is R times the radial part of 

<I>(NLM I R, e, <1», 
that is, 

<I>(NLM I R, e, <1» 

= f J:v~R) Yl1(e, <1» (4b) 

\ k fYL(R) pJl(COS e){COSM<I> (4c) 
~ LJ1 R L sin M<I> 

and the coordinates of the electron in one system 
(r, e, cp) are related to the other system (R, e, <1» by 
the relations 

R2 = a2 + r2 - 2ar cos e, (Sa) 

<I> = cp, (5b) 

-Rcos e + rcos e = a, (5c) 

R sin e = r sin e. (5d) 

Changing the variable of integration in (4a) from e to 
R with the help of the relations (5), we have 

IX~(NLM I a, r) 

l
(a+r> 

= (27T/€J1)(k~olI/ar) !.vL(R)Pi!(Zl)Pi11(Z2) dR, 
la-rl 

where 
(6a) 

Zl = _(a2 + R2 - r2)/2aR = cos e (6b) 
and 

Z2 = (a2 + r2 - R2)/2ar = cos e. (6c) 

In order to simplify expression (6a) we need certain 
mathematical relations appropriate for Legendre 
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polynomials. These are 

pt11(Z2) 
2111 7Tl(Z; _ 1)-1I1/2( _1)-11-1/2 

=------~~--~~--~-----

ret - 1/2 - M/2)r(1 + 1/2 - M/2) 

x F( -1/2 - M/2, t + 112 - M/2; t, Z~) 
7T!2M+IZ2(Z~ - 1 )-J1/2( _1)-.11/2 

ret + 1/2 - M/2)r( -1/2 - M/2) 

x F(t - 1/2 - M/2, 1 + 1/2 - M/2; t Z~), 
(7a) 

where F(a, b; c, z) is the hypergeometric function 
defined as 

~ (a)n(b)n n 2 
F(a,b;c,z)="", z, c;;60, -1,- ,"', 

n~O (c)nn! 
(7b) 

(a)o = 1, (7c) 

(a)n = rea + n) = a(a + 1) ... (a + n - 1), 
rea) 

n = 1,2,3, .. '. (7d) 

In relations (7a) and (7d), rex) is the standard 
Gamma function. 

dL +N 

pi1(ZI) = (1/2L)(I/L!)(1 - ZD·11
/
2 dzf+ 111 (Zi - I)L, 

(8a) 
dL +1I1 (2L) , qu.(L-M)/2 
__ (Z2 _ I)L= -' L (-Iy'p ,Z£-1I1-2r' 
dZr,ll I L! r'~o r I , 

(8b) 

(L!)2(2L - 2r')! 
Pr' = (2L)!(L- r')!r'!(L- 2r' _ M)!' (8c) 

where quo (L - M)/2 stands for "quotient of 

(L - M)j2" (that is, the integral part of (L - M)j2; 
for example, ! has quotient 1). 

Making use of (6b) and (6c), we have 

(1 - Zi)/(1 - Z~) = r2/R2 . (9) 
Further, 

Z~ = (~)2 i (m) (~)q, (lOa) 
2aR q~O q a - r 

where 

(
m) m! 
q = q!(m - q)! 

(10c) 

and 
p~l( -x) = (-ll+1I1pf(x). (lOd) 

Now if we define 

Afz(R) = pf(ZI)P;lI(Z2)' (lla) 

then Eq. (6a) becomes 

rx~(NLM I a, r) 

l
(a+r) 

= (27T/€,lI)(kiP,I/ar) fNLM(R)Afz(R) dR. 
la-rl 

(llb) 

Making use of the expansion (7a) for P;11(Z2)' the 
expression (8) for P'J!(ZI) and the relations (9) and 
(10) one can put the expression (lla) for Ai~(R) into 
the form 

111 (_1)L /)M 
ALZ=~(ra 

2 

where 

n=co 
r'~qu. (L-M)/2 
q~I~2r'-lII 

X L Cg(r) BI - B2 -'--'--'---'-
q'~2n+I [ (l + r2/a2)] 

n,r',q,q'~O (2r/a) 
x (R/a)-L+2r'+2H2q', (12a) 

C = (-IY'+q'(2n)!(2L- 2r')! 

n!q'!(2n + 1 - q')!q!(L- 2r' - M - q)!(L- r')!r'!' 

(1 - r2/a2)L-2r'-N-q(1 + r2/a2)2n-q' 

(12b) 

g(r) = 2L-2r'-N (2rla)2n' (12c) 

B _ 7Tl ( -1/2 - M/2)n(t + 112 - M/2)n(2n - q' + 1) 

1- ret - 1/2 - M/2)r(1 + 1/2 - M/2)(1/2)n ' 
(12d) 

1 

B = 27T~(l - 1/2 - MI2)n(1 + 1/2 - M/2)n(2n + 1) 

2 ret + 1/2 - MI2)r(-1/2 - M/2) . 
(12e) 

The lower limits of n, r', q, and q' in the summations 
in (12a) are zero, but the higher limits for n, r', q, and 
q' are 00, quotient of (L - M)/2, L - 2r' - M, and 
2n + 1, respectively. Equation (l2a) gives only a 
finite number of terms because the factorials, Gamma 
functions, and (a)n make the terms vanish after a 
certain number of terms. 

We can now simplify BI and B2 as defined in (l2d) 
and (l2e) with the help of standard relations: 

rCz)r(l - z) = 7T/sin 7TZ, (13a) 
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Thus 

B _ sin {l7T(1 - 1- M)}(l + M - I)! (-1/2.,... M/2Mt + 1/2 - M/2M2n - q' + 1) (14a) 
1 - t(1 - M)![i(1 + M) - 1] !2 1+M - 1 (t)n ' 

B = sin {l7T( -I + M)} (I + M)! (l- 1/2 - M/2)n(1 + 1/2 - M/2)n. (2n + 1). 
2 -HZ - M - 1)!21-blI-l HI + M - 1)! Cl>n (14b) 

It is evident from (14a) and (14b) that 

Bl = 0 if 1+ M = odd integer, 

B2 = 0 if 1+ M = even integer. 

(15a) 

(15b) 

g(r), B1 , and B2 as defined by (12b), (12c), (14a), and 
(14b), and we define the new running index s as 

s = r' + q + q'. (16) 

Next, we substitute (12a) for Aft in (11 b) with C, Finally, we obtain 

I+L i(a+r) 
IX~(NLM I a, r) = E 2 Di~'s fNLJiR)(R)-L+2S dr, 

S~O la-rl 
(17a) 

where 

a2- L i 2L+I- M ) (I - M/2)![(l + M)/2 - I]! a (I + M)! 
I + M = even integer, (17b) 

{

(21 + 1) (_I)L cos {[(l + M)/2]7T}(l + M - 1)! (~)M-l (1- M)! if 

E= 
21 + 1 ( _1)L sin {[( 1 + M)/2]7T}(l - M)! (~)M-2 (1 + r2) if I + M = odd integer (17c) 

a2- L 2(2L+l+1-1I[) [(I - M - 1)/2]! [(I + M - 1)/2]! a a2 

and 

with 

and 

110 = quotient of (l + M)/2, 

r~ = quotient of (L - M)/2, 

q~ = (2n) or (2n + 1) according as (I + M) is even or odd, 
(_l)r'+q'(2n) !(2L - 2r')! 

C = n!q'!(2n + 1 - q')!(s - q' - r')!(L- r' - M - s + q')!(L- r')!r'!22(n-r') ' 

C1 = {
( -1/2 - M/2)n(l + 1/2 - M/2)n(2n - q' + l)/mn if 1+ M = even integer, 

(l - 1/2 - M/2>n(1 + 1/2 - M/2)n(2n + l)/Wn if 1 + M = odd integer. 

(17d) 

(17e) 

(17f) 

(17g) 

The expression (17a) is a general expression and 
can, therefore, be used for any values of I, L, and M. 
Knowing IX? from (17a) we can determine IXI from 
(3a), that is, 

Since 1+ M is odd, we use (l7c) for E and (17g) for 
C1 . Substituting (19) in (17c), (17d), (17e), and (17g) 
for E, DYt, C, and C1 , we obtain 

IXI(NLM I a, r) = KILllrlX~(NLMI a, r), (18) 

where KILll is already defined in (3b). 
In order to check our expressions (17) we compare 

the expressions for a few IX functions from the ex­
pressions (17) with those obtained by L6wdin. 

A. Derivation of ()(~(NlO I G, r) 

In this case, 

I = 1, L = 1, M = O. (19) 

(20b) 

2( -l)Q' 
C = (20c) 

(1 - q')!q'!(s - q')!(l - s + q')!' 

(20d) 
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Hence, from (17a) and (20), we have 

oc~(NI0 I a, r) 

= - S~2[ (1 - ~:) f fN10(R)(~r1 dR 

+ ~2 f fN10(R)(~) dR - f fN10(R)(~r dR J-
(21) 

The expression (21) agrees with the corresponding 
result obtained by Lowdin. 

Similarly, by substituting I = 1, L = 0, and M = 0, 
in (17), we have 

oc~(NOO I a, r) 

= 4~2[ (1 + ::) f fl\"Oo(R) dR - f fNOO(R) (~)2 dR J-
(22) 

in (2S), after integration we have 

{
(a + r)-L+28+1 - (Ia _ r l )-L+28+1} 

fNLM(a) -L+ 2s + 1 

1= if L-2s¢1, (27a) 

fVL.l1(a) In { a + r} 
la - rl 

if L- 2s = 1. (27b) 

For small values of r, since the integration (2S) 
occurring in (17a) cannot be performed very accurately, 
we therefore use the relations (27a) or (27b), accord­
ingly as L - 2s ¢ 1 or L - 2s = l. 

C. Value of the oc Function for r = 0 

For r -+ 0 Eg. (Sa) yields 

R-+a, 
r~O 

and (6b) gives, for r = 0, 

Z1 = -1 = cos e. 
Making use of 

(2S) 

(29) 
Also, for I = 0, L = 0, and M = 0, we have 

1 f(a+rl 
oc~(NOO I a, r) = - 1.yoo(R) dR. 

2ar la-rl 
(23) and 

For L = 1, I = 1, and M = 1 we get 

3 [(1 r2 1 r4) f a oc~(Nll I a, r) = - -2 - - --; + - """4 feR) - dR 
Sr 2 a 2 a R 

Expressions (22), (23), and (24) also agree with 
Lowdin's expressions. 

B. Asymptotic Form of oc Functions for 
Small r 

For numerical evaluation of the oc function [Eg. 
(l7a)] we have to compute the integral occurring in 
Eg. (17a), which we denote by I: 

~
(a+r) 

I = 1.YLll(R)R-L+28 dR. 
.Ia-rl 

(2S) 

F or small r we can write 

fNLM(a ± r) = fSLJia) ± rfl~LM(a) .. '. (26) 

Retaining only the first term in (26) and substituting 

f pfI( cos e) sin e de = 201,00 M,O' 

from (4a), (2b), and (2c) for r = 0, we finally obtain 

ocO(NLM /a 0) = fNLM(a) (-l)Lo 0 . 
I' ~ ~o (30) 

a 

The expression (30) has also been quoted by 
Lowdin, and acts as a good numerical check in actual 
computations. 

In summary, we have obtained a general expression 
for oc1(NLM I a, r) in Eq. (17) which permits the 
evaluation of two-center integrals involving wave­
functions of any L. This expression includes as special 
cases those derived by Lowdin for smaller special 
values of f, L, and M. It is hoped that the availability 
of this general expression for oc will make it convenient 
to use numerical Hartree-Fock atomic wavefunctions 
in molecular and solid-state problems, as has been 
the case more recently with analytic functions. 
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We consider the version of the Lee model with relativistic kinematics. The mass renormalization of 
t?e. V particle, described in purely .field-theoreti~ terms,. is a nonlo~al effect. We discuss the composite 
hml! of .the ~~del. The natural ch?lce of co~poslte field IS nonl?cal m the elementary constituents. In the 
composIte hmlt, Zl does not v~msh. The HII~ert-.space f~rmahsm of the composite theory is not equiv­
alent to that of an N-O theory wIth a four-partIcle mteractlOn. All these results are cutoff independent. 

1. INTRODUCTION 

In a recent analysis,1 Ynduniin pointed out that 
when the Lee model is analyzed with relativistic 
kinematics, the point-coupling limit of the model is 
better behaved than when nonrelativistic kinematics 
are used. 2 •3 The charge renormalization remains 
finite, and no ghost states appear. These features 
make the model particularly suitable for the investiga­
tion of various effects of the renormalization program. 

In the present paper, we wish to discuss the follow­
ing questions. Is the renormalization a local process? 
What happens to the theory in the limit Zv -+ ° 
(composite V particle)? 

To make these questions more precise, we introduce 
appropriate linguistic conventions. By the "Lee 
model," we will understand the Lee model with 
relativistic kinematics, as discussed in Ref. 1. By the 
"point limit" of the Lee model, we understand that 
calculations in the Lee model are to be performed with 
a cutoff, which will be removed in the end. 

We discuss the N-O sector of the model only. We 
show that an operator may be introduced whose 
Fourier components create physical one V-particle 
states (eigenstates of the local Hamiltonian) and that 
this operator is formed in a nonlocal fashion from 
the bare V, N, 0 "fields" (Fourier transforms of the 
creation operators), even in the point limit of the 
model. We christen this object the totally renormal­
ized V field. 

We study the composite limit of the model by letting 
Zv -+ 0, as has been done in the conventional form 
of the Lee model by various authors. 4 .5 We show that 
the nonrelativistic nature of the model causes diffi­
culties in the definition of a vertex-function re-

• Present address: Magdalen College, Oxford, England. 
1 F. J. Ynduniin, J. Math. Phys. 7, 1133 (1966). 
2 T. D. Lee, Phys. Rev. 95, 1329 (1954). 
3 S. S. Schweber, All Introduction to Relativistic Quantuln Field 

Theory (Harper & Row Pub!., Inc., New York, 1961). 
4 J. C. Houard, Ann. Ins!. Henri Poincare 2, 105 (1965), and 

references quoted there. 
5 P. K. Srivastava and S. R. Choudhoury, Nuovo Cimento 39, 

650 (1965). 

normalization constant. However we get round these, 
Z1 does not tend to zero with Z3' contrary to what is 
observed in the conventional model. We discuss the 
Green's function equations for the composite V, and 
note that the totally renormalized V field gives a 
particularly simple form. We consider the possibility 
that the composite V model is equivalent to a model 
without a V, with the Nand fJ having a four-field 
interaction. Although the S matrices are equal, as 
follows from the general Green's function theory of 
composite particles,6 the two theories cannot be 
completely equivalent in the details of their Hilbert 
space formalism. This arises from a combination of 
renormalization considerations with the relativistic 
kinematics, and contrasts with the situation observed 
in simpler models. 7 

We discuss the effective coupling constant of the 
composite model, illustrating ideas of Ref. 6. A 
suggestion about the composite limit of a model with 
two V particles5 is shown to be specious. We point 
out that in the present model, Z3 = ° does not arise 
from "kinematic" considerations, as has recently 
been suggested. 

2. THE LEE MODEL 

The free Hamiltonian is 

Ho = f Er'(P)V*(p)V(p) dp + f Es(p)N*(p)N(p) dp 

+ f w(p)a*(p)a(p) dp. (1) 

Here, V, N, a are annihilation operators for the 
fermions Vand N and the boson O. Er·, E.\', ware the 
corresponding energy functions, which in the rela­
tivistic model have the form 

Ev(p) = (M2 + p2)\ 

Es(p) = (m 2 + p2)~, 
w(p) = (",2 + p2yr, 

(2) 

6 M. M. Broido and J. G. Taylor, Phys. Rev. 147,993 (1966). 
7 K. Sekine, Nuc!. Phys. 76, 513 (1965). 
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where M, m, fl are the masses of V, N, e particles, 
respectively. The interaction Hamiltonian is 

HI = J dpbEv(p)V*(p)V(p) 

+ g I dp dk[h(p, k)V*(p)N(p - k)a(k) + H.c.], (3) 

where bEv(P) is the energy renormalization of the V 
particle: 

bEv(p) = g2Idk Ih(p, kW , (4) 
Es(p - k) + w(k) - Ev(p) 

h(p, k) = j(p, k)[Ev(p)E.v(p - k)(I)(kW~; (5) 

f(P, k) is a cutoff function taking the value unity in 
the point-coupling limit. We retain it, following the 
conventions set up in the Introduction. 

The tractability of the model arises largely because 
the Nand 0 particles do not need renormalization. 
Then if we demote the physical one-particle V state by 
!V(P»d' it is given by 

I V(P»d = zt(P){ V*(p»o 

+ g f dk<D(p, k)N*(p - k)a\k»+ (6) 

where the state function <P(p, k) is, in the relativistic 
case, 

<P(p, k) = ~ h(p, k) . (7) 
(br)" Ev(p) - Es(p - k) - w(k) 

Equation (6) is the solution of the one-particle problem 
and tells us just what we want to know, namely that 
if we regard the one-particle physical V state as 
created by a creation operator W*(p), the Fourier 
transforms 

W(x) = (27T)-:1 f dpeiPXW(p)Et(p), 

Vex) = (27T)-} f dpeiPx V(p)Ei(p)zt(p), 

N(x) = (br)-:1 f dpeiPXN(p)Ei-Cp), 

and so forth, are connected by the relation 

W(x) = Vex) + J N(x - y)e(x - z)F(y, z) dy dz, 

where 

F(y, z) = f F(p, k) exp {i(py + kz)} dp dk 

and 

F(p, k) = gj(p, k)Zt(p) 
Ev(p) - EN(P - k) - w(k) 

(8) 

(9) 

(10) 

Then W(x) , as given by Eq. (8), is our totally re­
normalized V field. N(x) and e(x) are of course 
already totally renormalized. Note that F(p, k) is in 
fact independent of the coupling constant g. 

Let us consider the properties of W(x). Most 
strikingly, it is not point coupled, even in the point 
limit of the theory (f = 1). Point coupling of W 
would require F(p, k) to be a function of (p - k). 
(There is also a nonlocality in the V term due to the 
p dependence of Zv, a dependence whose effects we 
will discuss in detail below, but this particular 
nonlocality is less important.) We see from (10) that 
this condition on F(p, k) cannot be achieved by any 
sensible choice of f(p, k). For instance, if we choose 
f(p, k) so that F(p, k) = 1, the integrals involved in 
the (N-e)-sector S matrix, which are convergent even 
for f = 1, go badly divergent. Thus the totally re­
normalized field cannot be point coupled if the original 
interaction Hamiltonian is. 

As we can see from the spectral representation for 
Zv, it is of the form 

Zv(p) = II Yep, kW dk, 

where, if the masses are neglected, Y is a function of 
(p - k) only. Hence in this approximation Zv(p) is 
constant. Provided that M < fl, the neglect of the 
masses then causes F(p, k) to become a continuous 
function of (p - k) in the point limit, and a direct 
manipulation yields the approximate, local formula 

W(x) = Vex) + gV N(x) • Ve(x). 

We do not know what to make of this odd relation. 

3. RENORMALIZATION CONSTANTS 

Only the V particle requires renormalization. The 
mass renormalization is logarithmically divergent in 
the point limit, as we see from Eq. (4) (compared 
with the linear divergence in the conventional version). 
We note that 15M is proportional to g2. 

The "wavefunction renormalization constant" Zv 
appearing in·Eq. (6) is now no longer a constant as in 
the static case, but is a function Zv(p) of the V three­
momentum. This need not cause any trouble provided 
we carefully consider the relation between this Zv(p) 
and the wavefunction renormalization constant, say 
Z3' of a fully relativistically covariant quantum 
field theory. (After all, the main interest of the Lee 
model is as a "model" of just this class of theories.) 
Such a Z3 is certainly a Lorentz scalar (and may be 
computed6 in terms of Green's functions). If our 
model were covariant, the Zv(p) of Eq. (6) would be a 
function of the appropriate four-momentum squared, 
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and Z3 would be related to ZV(M2) and would re­
normalize the complete propagator of the theory. 
But the model is quite fundamentally noncovariant, 
independently of the relativistic choice of energies 
(or of any other relevant form factors). With this 
proviso, the function Zv(p) will play the role. of the 
wavefunction renormalization constant, partIcularly 
in discussing the possibility of a composite V below. 

Certainly Zv(p) is well defined and finite in the 
point limit and is proportional to g-2 (whereas in the 
static model it is logarithmically divergent). 

There is not general agreement in the literature 
about a vertex-function renormalization constant. 
We feel that it is most natural, following Ref. 1, to 
define the renormalized coupling constant gr as the 
residue in the pole at M2 in the N-() scattering ampli­
tude A(s). In the point limit this gives l 

2 g2 

gr = 8M 

x {I + L roo , p
2

dp 2}-1 
2M Jo EN(p)w(p)[EJV(p) - w(p) - M] 

(11) 

If we could define a vertex-function renormaliza­
tion constant Z1 by 

g~ = Zi1Zvg2 (12) 

(in the conventional fashion), clearly Z1 would be a 
finite function of g, tending as g -- 00 to a finite, 
nonzero limit. Actually this analogy is not very useful 
because of the p dependence of Zv, but it does show 
us that in no sense at all can Z1 = 0 arise through the 
limit g -- 00, and suggests strongly that this will also 
be the case in a full relativistic theory. We will refer 
to this in our remarks on the composite limit of the 
model below. 

It is interesting to observe that for M = 0, the 
renormalized coupling constant given by (lI) is finite 
and is independent of the bare one. This latter prop­
erty has been conjectured for quantum electrodynam­
ics (the photon corresponding to the massless V), 
on the basis of perturbation theory.s 

4. THE COMPOSITE V LIMIT 

In accordance with the general theory6 we let V 
become composite by letting ZT'(P) -- O. In this 
process, we must regard Zv(p) as dependent on 
appropriate further variables, and discuss how to vary 
these. Such variables are the renormalized quantities 
gr and M. (We could also include the Nand 0 masses 
m and fl, but we will not be interested in the possible 

8 M. Gell-Mann and F. E. Low, Phys. Rev. 95,1300 (1954). 

variation of the results with these masses.) Equation 
(11) is a locally 1-1 relation between gr and g, and 
thus we can meaningfully talk about letting Zv(p) -- 0 
by letting g -- 00 (as it will, by the previous section, 
uniformly on compact sets). Then gr is given by 

max 2 lOOp P 2 d }-l 
(gr ) = 47T {50 EN(P)w(p)[EN(P) - w(p) - M]2 

(13) 

so that we can vary the renormalized mass of the 
composite provided we also vary the renormalized 
coupling constant by Eq. (13). We notice that the 
connection expressed by Eq. (13) is locally 1-1, as is 
required for a correct particle interpretation. This 
condition fails for the photon in quantum electro­
dynamics9 and is responsible for the.failure of attem~ts 
to describe quantum electrodynamics as a composIte 
theory.9 

We see that the dressed I-particle V state, given by 
Eq. (6), remains well defined. The first term in curly 
brackets tends to zero, but the second does not 
because Z~g remains finite. Similarly, the totally v . 
renormalized V field, Eq. (8), remams well defined 
and just as non-poi nt-coupled as ever. 

Thus we see that although we could perfectly have 
defined the composite V field by the local choice 

wlocal(X) = N(x)()(x), (14) 

we immediately obtain a nonlocality when the mass 
renormalization is performed. This is characteristic­
ally field-theoretic effect; the V is off its mass shell in 
N-O scattering by an amount given by Eq. (7). 

It is generally considered that the deuteron cannot 
be a composite in the sense of field theory because it 
has internal structure. On the other hand, it is known10 

that the success of the effective-range approximation 
can be explained in terms of Z = 0 theory. We see 
that there is nothing contradictory about all this; the 
internal structure is reintroduced by the renormaliza­
tion of the local composite field. 

We can perform a Green's function analysis of the 
local composite field Wlo""l according to the methods 
given in detail in Ref. 6. The vertex-function equation 
will be a Bethe-Salpeter equation involving mass­
renormali::ed Green's functions of Wlota1 , and we see 
at once that these will be precisely the Green's func­
tions of W (which will of course need no mass renor­
malization). In this sense, the totally renormalized 
field is forced on us by the renormalization program. 

Unfortunately we cannot make any interesting 

9 M. M. Broido, Phys. Rev. 157, 1444 (1967). 
10 S. Weinberg, Phys. Rev. 137, B672 (1965). 
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assertion of this sort about charge renormalization, where 
because the renormalization of the VN() vertex is J 
entirely due to bubbles, i.e., to what are generally Q(p, k) = h(p, k) h(p, k')<I>(p, k') dk'. 

called mass-renormalization effects. Thus a detailed 

(20) 

discussion of charge-renormalization effects and 
locality will have to await the introduction of models 
in which the charge renormalization is less trivial 
(from a graphical point of view). 

5. IS THE COMPOSITE MODEL EQUIVALENT 
TO A MODEL WITHOUT A V? 

We wish to investigate the possibility of the comp­
lete equivalence of the Lee model with composite V 
and a model with Hamiltonian 

K=Ko+K[, 

Ko = J EN(P)N*(p)N(p) dp + J w(p)a*(p)a(p) dp, 

(15) 

K[ = A'J a*(k)N*(p - k)h(p, k)h(p, k') 

X N(p - k')a(k') dk dk' dp. (16) 

By complete equivalence we mean, of course, 
equivalence of the entire Hilbert-space formalism and 
not merely of the S matrices. The latter is already 
guaranteed by the work of Ref. 6 (at least for the 
point limit). 

We will see that the appearance of the function 
h(P, k) in (16) is quite a general necessary condition 
for the equivalence. Namely, whatever the exact 
form of the interaction Hamiltonian K[, the require­
ment that the dressed one-particle V state, given in 
terms of Nand () by the composite limit of Eq. (6), 
i.e., by 

I V(P)d = {!~~ ztg}f dk<I>(p, k)N*(p - k)a*(k»o, 

(17) 

should be an eigenstate of K with eigenvalue Ev(P), 
reads 

K[IV(p»d 

= {;~~ ztg}J [Et(p) - EN(p - k) - w(k)] 

x <l>(p, k)N*(p, k)a*(k»o dk 

= {!~~ zig} J h(p, k)N*(p - k)a*(k»o dk. (18) 

This equation shows already why we must have h(p, k) 
in K j as given by Eq. (16). Then use of (16) yields 

K[ IV(P»d = -A'J Q(p,k)N*(p - k)a*(k»odk, (19) 

Clearly the expressions (I8) and (19) cannot be 
equal unless the integral in (20) is a constant. Since 
it is not, the equivalence is impossible. This was what 
we set out to prove. 

A less restrictive form of equivalence would be to 
require only that the rest state of the composite should 
have energy eigenvalue M. Then the equality of (I 8) 
and (19) has to hold only for p = O. The integral in 
(20) is precisely the mass-shift integral, so that we 
obtain the condition 

A' = lim (21) 

This condition was derived in Ref. 6 as a general 
equivalence condition (for the two systems of Green's 
functions) in any Green's function system. It also 
arises in the nonlocal Hamiltonian model of Ref. 7 
where the entire formal apparatus is equivalent to the 
g -+ 00 limit of a simple elementary model. Thus we 
see that although the equivalence of the Hilbert-space 
formalisms of elementary and composite models holds 
only in quite special cases, the condition (21) on the 
coupling constants is an extremely general condition. 

6. MISCELLANEOUS REMARKS 

Dispersion relations for the Lee model were written 
down in Ref. I. They are very similar to those of the 
Zacharaisen model. We have pointed out that Zl -+ 0 
does not occur in the composite limit of the Lee 
model. This suggests that where it occurs in the 
Zacharaisen model,n it is due to the approximations 
used (elastic unitarity and perturbation theory). 

It has been asserted5 that in the Lee model with two 
composite V particles, only one V becomes composite 
when both Zv tend to zero. This happened because 
the authors of Ref. 5 ignored the solution of their 
equations corresponding to our condition (21). (At 
the bottom of page 653 of their paper, let OC l -+ 0, 
g2 -+ 0, with g~/OCl finite in the limit.) This point will 
be discussed in detail in a forthcoming publication.12 

Finally, it has been suggested13 that the condition 
Z3 = 0 is a "necessary condition for composite 
particles" arising in a purely kinematic fashion. This 
is clearly not the case in the model we consider here. 
Indeed, when we consider the criterion, Eq. (3) of 

11 See, for instance, N. G. Deshpande and S. A. Bludman, Phys. 
Rev. 143, 1239 (1966), and references quoted there. 

12 M. M. Broido and J. G. Taylor, Phys. Rev. 161, 1301 (1967). 
13 H. M. Fried and Y. S. Jin, Phys. Rev. Letters 17, 1152 (1966). 
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Ref. 13, in the composite Lee model, we find Z-1 = 0, 
contradicting what we know to be the case (namely 
Z = 0). We believe that this unfortunate conclusion 
is due to these authors' use of perturbation theory. 
The failure of perturbation theory in composite mod­
els is hardly surprising when one considers that in all 

JOURNAL OF MATHEMATICAL PHYSICS 

known soluble models, the composite limit corresponds 
to g -+ 00. 
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This paper uses the sample probability-space description to review, under general conditions, the 
measurement process whereby an empirical expectation value is obtained for comparison either with 
other values or with values calculated from a theory. The emphasis here is on some of the conditions 
which must be satisfied by general sequences of single measurements, about which an observer may have 
relatively little knowledge, in order that such sequences yield suitable expectation values. In particular, 
sequences are considered for which the requirements that the single measurements of the sequence be 
independent and made of the same physical quantity on ensembles of identically prepared systems are not 
necessarily satisfied. The differences between sequences which satisfy these requirements and those which 
do not are discussed in terms of the implications or meaning of the resultant expectation value as a point 
of contact between theory and experiment, 

I. INTRODUCTION 

In science in general and particularly in quantum 
mechanics, the basic method of making contact 
between theory and experiment is by means of expecta­
tion values obtained from seq uences of single measure­
ments. From a sequence of N single measurements in 
quantum mechanics, the mean M.v of the N empirical 
results is determined. As N goes to infinity, the 
sequences of empirical means is supposed to converge 
to a limit value which is equated to or compared with 
an expectation value TrpO obtained from theory.l 

There are also some requirements or conditions of 
acceptability which are usually imposed on a sequence 
in order that it yield a limit empirical mean suitable 
as a point of contact between theory and experiment. 
The requirements are that each single measurement 
in the sequence is made of the same physical quantity 
on a system obtained from an ensemble prepared 
under identical relevant conditions. 2 Also the single 
measurements are usually required to be statistically 
independent of one another. 

* This work was performed under the auspices of the U.S. 
Atomic Energy Commission. 

1 J. Von Neumann, Mathematical Foul/datiol/s of Qual/tulll 
Mechal/ics, translated by R. T. Beyer (Princeton University Press, 
Princeton, N.J., 1955), Chap. IV. 

2 J. M. Jauch, Helv. Phys. Acta 37,293 (1964). 

Although these requirements are usually considered 
to be satisfied for sequences of measurements in 
quantum mechanics, it is possible to construct 
examples which do not satisfy one or more of these 
requirements. For example, consider two states, p 
and p', prepared by two apparatus, A and A', each of 
which separately satisfy the "same preparation con­
dition" requirement. Then one can consider a sequence 
of single measurements made on an ensemble prepared 
by using both apparatus, A and A', in some definite 
proportion. Then the sequence does not satisfy the 
"same preparation condition" requirement. 

From this example it might appear that one does 
not need to impose any requirements as conditions of 
acceptability on sequences of single measurements. 
However, it is quite clear that any arbitrary sequence 
of single measurements is not acceptable. The question 
then arises regarding what some minimum con­
ditions are which a sequence must satisfy in order to 
yield a limit empirical mean suitable for comparing 
with a theoretical calculation. 

This paper is mainly concerned with this question. 
In particular, we consider here the description 
of sequences of single measurements which do not 
satisfy the "independence," "same physical quantity," 
and "same preparation condition" requirements. 
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els is hardly surprising when one considers that in all 

JOURNAL OF MATHEMATICAL PHYSICS 

known soluble models, the composite limit corresponds 
to g -+ 00. 
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This paper uses the sample probability-space description to review, under general conditions, the 
measurement process whereby an empirical expectation value is obtained for comparison either with 
other values or with values calculated from a theory. The emphasis here is on some of the conditions 
which must be satisfied by general sequences of single measurements, about which an observer may have 
relatively little knowledge, in order that such sequences yield suitable expectation values. In particular, 
sequences are considered for which the requirements that the single measurements of the sequence be 
independent and made of the same physical quantity on ensembles of identically prepared systems are not 
necessarily satisfied. The differences between sequences which satisfy these requirements and those which 
do not are discussed in terms of the implications or meaning of the resultant expectation value as a point 
of contact between theory and experiment, 

I. INTRODUCTION 

In science in general and particularly in quantum 
mechanics, the basic method of making contact 
between theory and experiment is by means of expecta­
tion values obtained from seq uences of single measure­
ments. From a sequence of N single measurements in 
quantum mechanics, the mean M.v of the N empirical 
results is determined. As N goes to infinity, the 
sequences of empirical means is supposed to converge 
to a limit value which is equated to or compared with 
an expectation value TrpO obtained from theory.l 

There are also some requirements or conditions of 
acceptability which are usually imposed on a sequence 
in order that it yield a limit empirical mean suitable 
as a point of contact between theory and experiment. 
The requirements are that each single measurement 
in the sequence is made of the same physical quantity 
on a system obtained from an ensemble prepared 
under identical relevant conditions. 2 Also the single 
measurements are usually required to be statistically 
independent of one another. 

* This work was performed under the auspices of the U.S. 
Atomic Energy Commission. 

1 J. Von Neumann, Mathematical Foul/datiol/s of Qual/tulll 
Mechal/ics, translated by R. T. Beyer (Princeton University Press, 
Princeton, N.J., 1955), Chap. IV. 

2 J. M. Jauch, Helv. Phys. Acta 37,293 (1964). 

Although these requirements are usually considered 
to be satisfied for sequences of measurements in 
quantum mechanics, it is possible to construct 
examples which do not satisfy one or more of these 
requirements. For example, consider two states, p 
and p', prepared by two apparatus, A and A', each of 
which separately satisfy the "same preparation con­
dition" requirement. Then one can consider a sequence 
of single measurements made on an ensemble prepared 
by using both apparatus, A and A', in some definite 
proportion. Then the sequence does not satisfy the 
"same preparation condition" requirement. 

From this example it might appear that one does 
not need to impose any requirements as conditions of 
acceptability on sequences of single measurements. 
However, it is quite clear that any arbitrary sequence 
of single measurements is not acceptable. The question 
then arises regarding what some minimum con­
ditions are which a sequence must satisfy in order to 
yield a limit empirical mean suitable for comparing 
with a theoretical calculation. 

This paper is mainly concerned with this question. 
In particular, we consider here the description 
of sequences of single measurements which do not 
satisfy the "independence," "same physical quantity," 
and "same preparation condition" requirements. 
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Such a description applies to any sequences for which 
an observer either does not or can not know that 
these requirements hold. 

As a framework for discussion of general sequences 
of single measurements, probability theory is used. 
The fact that there are noncommuting observables 
in quantum mechanics is not immediately relevant 
to this work because the concern is with the proper­
ties of a single sequence of single measurements, 
not in comparing limit means obtained from different 
sequences. The fact that many textbook discussions of 
probability theory are limited mainly to independent, 
identically distributed3 sequences of single measure­
ments is not, as is well known,4 an intrinsic limitation 
of probability theory. 

Some general aspects of a description of a sequence 
of single measurements within a probability theory 
framework are discussed. In particular, the minimum 
ergodic conditions imposed by probability theory on 
a sequence are considered. We are also interested in 
the relationship between what an observer knows 
about a sequence and the consequences or implica­
tions of the result obtained from the sequence. It will 
be seen that for sequences for which the same physical 
quantity and same relevant preparation condition 
requirements are satisfied, the basic meaning or 
implication of a comparison between theory and 
experiment is stronger than it is for sequences for 
which an observer cannot know that these require­
ments are satisfied. This can be seen from the fact 
that, for the former type of sequence, the limit 
expectation value found empirically also applies to 
each single measurement of the sequence, whereas in 
the latter type, the limit value can not be applied to 
each single measurement. 

A basic aspect of the use of probability theory as a 
framework for describing sequences of single measure­
ments is that probability theory begins with or requires 
the assignment of a probability measure to each event 
generated by the sequence of single events. However, 
this does not imply that one must have prior knowledge 
of the values of the probabilities of the events of the 
sequence. If this were so, then probability theory 

3 An independent, identically distributed sequence is one in 
which there is no statistical correlation between the results of the 
single measurements of the sequence and for which the probability 
of occurrence of any single measurement result is independent of 
the place in the sequence at which the result occurs. Such sequences 
are slightly more general than those for which the single measure­
ments are independent and made of the same physical quantity on 
an ensemble of systems which is prepared under the same relevant 
conditions. This can be seen from the following sequence which 
satisfies the former but not the latter requirements: (I) a flip of a 
coin P (heads) = t, (2) a proton passed through a Stern-Gerlach 
apparatus P (spin up) = t, etc. 

• M. Loeve, Probability Theory (D. Van Nostrand Co., Inc., 
Princeton, N.J., 1965), 3rd ed. 

would be essentially useless. As has been pointed out,5 
one can profitably discuss within this framework 
sequences of measurements which are not actually 
comtemplated or for which the experimental condi­
tions are essentially impossible to realize on earth. 

At this point, it seems worthwhile to review very 
briefly some of the reasons discussed elsewhere6 why 
one must consider sequences of single measurements 
for which an observer cannot know that the same 
observable and same relevant preparation condition 
requirements are satisfied. The reason for presenting a 
review is that if it is possible for an observer to 
arrange all sequences of physical measurements such 
that he knows that these requirements are satisfied, 
then the extensions reviewed here would be of aca­
demic interest only so far as physics is concerned. 

One consequence of a description of the measure­
ment process, which includes these requirements, is that 
an observer must always know how to construct a 
sequence of single measurements which satisfies these 
requirements. That is, he must already know how to 
decide empirically whether or not each single measure­
ment of a sequence is made of the same physical 
quantity on systems prepared under the same relevant 
conditions. 

Now according to quantum mechanics, such empiri­
cal information can only be obtained as expectation 
values from other sequences of single measurements 
made of the same observables on ensembles prepared 
under the same relevant conditions. But then, in order 
to know that these requirements are satisfied means 
that still other sequences which satisfy these require­
ments have to have been done, etc. Thus one sees 
that the description of the measurements of an 
expectation value, as given in quantum mechanics, 
leads to an infinite regression in that any sequence of 
single measurements, which is to yield an expectation 
value, always implies previous sequences of single 
measurements by which one knows that the require­
ments are satisfied. Such a description does not allow 
one to start the process of acquiring empirical 
knowledge. The reason is that for sequences made at 
the start of tliis process, an observer cannot know 
what the relevant conditions are for identical prepara­
tion or how to ensure that a measurement apparatus 
measures the same observable for each single meas­
urement of a sequence. 

Furthermore, these arguments indicate that this 
inadequacy of the quantum-mechanical description 

5 W. Feller, An Introduction to Probability Theory and Its Applica­
tiol1s (John Wiley & Sons, Inc., New York, 1965), 2nd ed., Vol. 1, 
Introduction and Chap. I. 

6 P. A. Benioff (unpublished). 



                                                                                                                                    

516 PAUL A. BENIOFF 

of the measurement process is especially pronounced 
for the very fundamental measurements made at the 
start of the process of acquiring empirical knowledge. 
Consider, for example, the basic property of all 
sequences of single measurements in that each single 
measurement must occupy a different space-time 
region. This means that before one can know that an 
ensemble of systems is prepared under identical 
conditions, he must know that the necessarily different 
space-time labels associated with each preparation 
are irrelevant variables. How does one describe the 
sequence of single measurements by which this funda­
mental knowledge is acquired? Similar questions can 
be asked with respect to how one describes the 
sequences of single measurements by which the validity 
of an invariance principle for space-time transforma­
tions is empirically decided. 6

. 7 

From this brief review, it appears that one must 
consider more general types of sequences of single 
measurements than are considered in quantum me­
chanics. Since probability theory can handle quite 
general types of sequences, it seems worthwhile to 
give a review of the probability-theory description of 
general sequences, as such material does not seem to 
be easily available. Such a review can also yield clues 
regarding the basic properties of knowledge acq uisition 
which will be discussed in future work. 

Finally, this review is restricted to those single 
measurements which have an arbitrarily large but 
finite number of outcomes. This is not an essential 
simplification and is used because all single measure­
ments actually made have a finite number of observable 
outcomes. For the same reason it is assumed that 
the numbers Xl, x 2 , ••• , Xn which have 'already been 
assigned to the outcomes of each single measurement 
are all finite. Again this is not an essential simplifica­
tion. We shall in this review essentially follow Loeve. 4 

II. REVIEW 
A. Sample-Space Description 

Tn probability theory, any measurement can be 
associated with an induced probability space (n, A, P) 
where n is the space of all possible outcomes of 
the measurement, A is the Boolean a algebra of all 
measurable subsets of .0, and P is a probability 
measure defined on A. 8.9 In our case, the certain event 
n in the space for each single measurement is 
[Xl' ... , X "l, A consists of all subsets of n, and, for 
any event E in A, PE is the probability of occurrence of 
that event. 

7 E. P. Wigner, Nuovo Cimento 3,517 (1963); R. F. Houtappel, 
H. Vlln Dam. and E. P. Wigner, Rev. Mod. Phys. 37, 595 (1965); 
H. Ekstein, Phys. Rev. 153, 1397 (1967). 

8 Reference 4, Chap. III, pp. 362, 363. 
• Reference 5, Chaps. I, Y, and VIII. 

Similarly, a sequence of N single measurements is 
described by a Cartesian product of the N measurable 
spaces (n;, Aj) associated with the jth single measure­
ment with j = 1, 2, ... , N, and a probability measure 
defined on the product space. An infinite sequence of 
single measurements is then described by the proba­
bility space (.0, A, P), where n = (nj~l nj ), A = 
(nj~l A j ), and P is a probability measure on A. This 
infinite-product space is often referred to as the sample 
probability spaceB

•9 or the phase space of an experi­
ment,1o In this space the points of 0, (xa' xp, ... ), 
describe the possible trajectories of a whole experiment 
or equivalently give the possible infinite sequences of 
outcomes. The events Eai , IX = 1,2,'" ,n; j = 1, 
2, ... , as measurable subsets of A, denote the events 
"outcome Xa occurred on the jth single measurement." 
These events are explicitly given in (0, A) as 

Eai = 0 1 X .02 X . . • X n j _ 1 X [xalj 

X Oi+! X •. '. (1) 

An equivalent way to generate the sample space is 
to consider the set of events Eaj , CI. = 1, ... , 11 ; j = 
1, 2, ... as the generators of a Boolean a algebra A 
of events on a space .0. 11 This is done by taking all 
countable intersections, unions, and co:nplements 
among the Eaj . The Eaj are defined relative to the 
empty set <I> and the certain event .0 by.o = U:=l Eaj 
for each j (this says that each single measurement will 
yield some outcome) and <I> = Ellj 11 Epj for any j 
and CI. 'ji: f3 (this says that two outcomes cannot occur 
simultaneously in any single measurement). The points 
ofn are obtained from the infinite intersections of the 
Eaj for different j and correspond to the possible 
infinite sequences of outcomes. Again (12, A, P) is 
the sample probability space with P defined on A. 

The random variable X j (as an element of a space 
of measurable functions from n to Borel sets of the 
real line) which represents the jth single measurement 
is given by (j = 1,2, ... ) 

" 
Xi = Lx"IEai , (2) 

a=l 
where JEa;, the indicator random variable for the 
event E aj , has the value I for all points OJ E Eaj and is 
eq ual to 0 otherwise. The random variable X,v 
representing the mean of the first N single measure­
ments is defined as 

- I.\' 
XN = - IXj • (3) 

N 1=1 

One can also define on the event algebra A a 

10 U. Uhlhorn, Relldicollto SCI/ola l!1femazionale Fisica Enrico 
Fermi, Varenna, Italy, 1960; COllrse 14: Ergodic Theory (Academic 
Press Inc., New York, 1962), pp. 195-206. 

II Reference 4, Sec. 26. 
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measurable set transformation T by the relation 

Ea,;+! = TEa; (4) 

for all ()( = 1,'" ,11 andj = 1,2,···. Also for any 
event E = Eai n Epk n ... n Ew one has 

TE = Ea,H1 n Ep,k+1 n ... n E.,n+1' (5) 

If desired, T can be considered as a time translation 
by one unit and as such depends on the interval 
j + 1 - j and not on j + 1 and j separately. One 
also has 

(6) 

with P = 0, 1, ... and TO = 1. Also for any event E, 
consisting of arbitrary intersections and unions of 
different Eai , T P E shifts each index j to j + p. 

This transformation also induces a transformation 
T' on the space of random variables given by 

T'IE.i = 1TEai = IE.,i+1 (7) 

foralljand ()( = 1,"', n. Thus one has forp = 0, 1,'" 

X Hp = (T')PX i , (8) 

and Eq. (2) becomes 

X- 1 ~ (T')i-1X T' X N=- £.. 1= .V 1, 
N i=l 

(9) 

where the transformation T.~ is defined by 

TN = ! I (T')i-1. 
N i=l 

(10) 

It is worthwhile at this point to discuss some aspects 
of what has been presented so far. First of all, the 
events Eai and the random variables Xi were first 
introduced and then the transformations T and T' 
were defined on the given events and random variables. 
However, as Loeve has noted,12 one can use the 
transformations to define the sequence of single 
measurements, given the first one. Thus, if Ea1 for 
1 ::;; ()( ::;; 11 is the event "outcome ()( occurred on the 
first measurement," the event which corresponds to 
the same outcome of the jth single measurement as 
occurred in the first single measurement is defined as 
Ti-1 Ea1 . Similarly, the random variable· Xi repre­
senting the jth single measurement, which is a "repeti­
tion" of the first single measurement, is defined by 
(T'Y-1X1· 

Also, it is quite important to note that the set 
transformation T is neither invertible nor necessarily 
measure preserving. The noninvertibility of T can be 
seen from the fact that the inverse of T, if defined,13 

12 Reference 4, Secs. 30, 31. 
13 By the inverse of T is meant the actual inverse of T also defined 

as a set transformation, not a point transformation T-1 corre­
sponding to T. This use (Ref. 12) of T rather than T-1 to denote 
a set transformation is different from popular usage. 

when applied to any event E.i would give E.,i-1 ' 

However, this inverse when applied to the events 
Eat for any ()( is not defined as the Eat, for 1 ::;; ()( ::;; n 
describe the first events which can occur. As a result 
T has no inverse. This lack of an inverse corresponds 
to the description of a sequence of single measurements 
as having a beginning but no end. If one prefers to 
think of the sequence of single measurements as a 
sampling of a hypothetical doubly infinite sequence 
extending both into the infinite past and future, then 
the probability-theory description given above can be 
easily changed to describe this situation. In this case 
T has an inverse, since the index j labeling any event 
E.i now can have negative and zero values instead of 
positive values only. In this case the TV for p = 0, 
1, ... form a group of transformations rather than 
a semi group. 

In our opinion the fact that a sequence of single 
measurements has a beginning (but no end) is im­
portant. In particular, the fact that an observer can 
always add on more single measurements after an 
arbitrary finite sequence has been completed but that 
he cannot add on any before the first one, is an 
important aspect of the knowledge-acquisition process. 
That is, this process has a beginning. For this reason 
the description given above in which T does not have 
an inverse is to be preferred. 

The not necessarily measure-preserving property of 
T means that for any event E in A the probability of 
the event TE need not equal that of the event E. That is 

PTE ¥= PE (11) 

must be allowed for. This possibility arises because we 
specifically want to include sequences of single 
measurements which are not identically distributed. 
As was noted earlier, sequences of single measure­
ments made on the same system or made on an 
ensemble of identically prepared systems which are 
described by measure-preserving transformations are 
special cases of the more general description reviewed 
here. It should also be noted that we do not require 
that the single measurements be statistically inde­
pendent. 

The expectation value of the mean of the first N 
single measurements is obtained from Eqs. (2) and 
(3) as 

(12) 

where (IE. i ) = PEa;. Using Eq. (4) this result can 
also be written as 

n 

(Xx) = LxaPNEal , (13) 
a:=1 
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where the probability measure PN is defined in terms· of 
P by13 

(14) 

for every E in A. 
Also the limit probability measure P, if it exists, is 

defined by 

PE = lim PNE (15) 
N-+ro 

for every event E in A. If this limit probability exists, 
then the limiting expectation of the random variable 
X N is given from Eqs. (2) and (9) as 

n 

lim ('I'NX I) = L x"PEd . (16) 
N-+ 0() ,,~1 

The basic conditions which must be satisfied if a 
sequence of single measurements is to yield a number 
which can serve as a point of contact between theory 
and experiment is that the associated sequence of 
empirical means under consideration converge to a 
limit which can be uniquely represented as an expecta­
tion value. These conditions are equivalent to the 
requirements that the sequence of single measurements 
be ergodic, or that the sequence of random variables 
X N N = 1, . .. satisfy an ergodic theorem and the 
ergodic hypothesis. In our case an appropriate ergodic 
theorem states that if a limit probability measure P 
exists on A then, as N ~ 00, the random-variable 
sequence converges almost surely. That is, if Eq. (I 5) 
holds for every E in A, then from Eqs. (2), (9)12 

a.s.lim Xx = T'X1 = £fX1 , (17) 
l\i~- 00 

where £1' Xl is defined as the conditional expectation 
of Xl' given the sub (J algebra r of invariant events. 
(An event C E r is invariant if TC = C.) By almost 
sure convergence of Xx to £1' Xl is meant that 
Xx(w) ~ £~Xl in the Cauchy sense for every point w 
of 12 except possibly on a subset M of 12 for which 
PM = O. (One also has PM = 0 because T must be 
a null-preserving transformation. 12) 

Ergodic theorems, which, in our case, are entirely 
equivalent to Eq. (17), are the mean ergodic theorems14 

which say that for r ~ 1, if a limit probability P 
exists on A, then13 

lim [ r IT,"X1(w) - T' Xl(w) I' dP(OJ)]l/r = O. (18) 
J.V-oo In 

In particular for r = 2, Eq. (18) is equivalent to 

,. Convergence in rth mean and almost sure convergence are 
equivalent in our case because the random variables discussed here 
are all bounded; see Ref. 12. 

mean-square convergence of the sequence of empirical 
means. For the special case of T being invertible and 
measure-preserving, Eqs. (17) and (18) are Birkhoff's 
individual ergodic theorem15 and Von Neumann's 
mean ergodic theorem (r = 2),16 respectively. 

The desired result has not yet been achieved be­
cause T'Xl = £1' Xl still need not represent, almost 
surely, a single numerical result. In fact, if r is 
generated by a countable partition [C] of the sure 
event 12, then from Eq. (2), £1' Xl is defined up to a 
P equivalence bl7 •

18 

n 

£fX1 = LX" L PoEdIC, (19) 
,,=1 c 

where IC is the indicator random variable for the 
invariant event C and P OEal is the limit conditional 
probability for the event Ex1 given that the event C has 
occurred. The statement "up to a P equivalence" 
refers to the fact that P ('Eal is undefined for any event 
C for which Pc = O. 

The ergodic limit of Eq. (19) shows the problem 
more clearly in that the limit of the empirical mean 
sequences may be equal to anyone of the values 
La xa.PCEal for different C and in general one may 
not know which C of the partition to choose. This 
would be the case if the structure of the partition [C] 
or which points OJ of 12 belong to which C were not 
known. An equivalent statement is that the space 12 
is almost surely decomposable into invariant sub­
spaces C and that the infinite sequence of single 
measurements almost surely occupies only one of the 
subs paces C. In particular, this means that if the 
infinite sequence were repeated, then there is a nonzero 
probability P that a different limit value would be 
obtained. This can be easily seen from Eq. (17) by 
recalling that a given infinite sequence represents a 
particular infinite sequence of outcomes and hence 
a specific point of 12. If w labels the first infinite 
sequence and w' the repetition of the sequence, then 
by Eq. (17) the limit values obtained for the first and 
secon~ sequences would be given by La xaPC ,Ea1 and 
La. x.p o,Ea2 , where w E Cl and w' E C2 • 

To avoid these difficulties, the requirement that the 
sequence of single measurements is metrically transi­
tive is imposed. This is equivalent to the requirements 
that the transformation T be P indecomposable or 
that the only invariant events in r are almost surely 
<l> and 12.12 In this case £1'Xl = T' Xl red uces to an 
invariant degenerate random variable whose value is 

15 G. D. Birkhoff, Proc. Nat!. Acad. Sci. 17,656 (1931). 
,. J. Von Neumann, Proc. Nat!. Acad. Sci. 18,70,263 (1932). 
17 Reference 4, Sec. 24. 
18 Eq. (19) can also be extended to include noncountable paritions 

of!l; see Ref. 12. 
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given by 
n 

T'X1 = 2,x"PE"1' (20) 
,,=1 

A degenerate random variable X is one w'2.?se value 
on n is almost surely a constant equal to (X). 

B. Discussion 

With this we come to the desired result that a 
sequence of single measurements yields, in the limit, 
a number which corresponds to a unique expectation 
value. However, there are many other interesting 
aspects of this process which are worth considering 
at this point. 

1. Invariance Properties of P and T' 
First of all, the invariance properties of P and T' 

under T and T', respectively, should be noted. In 
fact it is easy to see from the definitions of P and T' 
that for any event E, PTE = PE and Pc = PC for 
any invariant event C. 12 Also the ergodic limit 
operator f' is invariant under T' or commutes with 
T' so that T'f'x = f'T'X = f'x. This can be seen 
from the facts that f' X is a sum over invariant events 
[Eq. (19)] and that P is an invariant measure. The 
invariance of P and T' occurs because T satisfies the 
semigroup or group multiplication property. That is, 
the translation Tm from events of the jth single 
measurement to events of the (j + n)th single measure­
ment is equal to Tm for m = 0, 1, 2, .... 

These properties of P and f' mean that the limit 
expectation values obtained from an infinite sequence 
of single measurements are independent of where the 
sequence is started. That is, the fact that PE,i = PE,,1 
and f' Xi = T' Xl, for any j, means that one could 
discard an arbitrary initial segment of the sequence 
without affecting the limit results or, equivalently, 
the sequence could be started with the jth single 
measurement as weIl as the first without affecting the 
limit results. If T refers to a time translation by one 
unit, then this invariance means that the expectation 
values are independent of what time ti the sequence 
begins. 

2. Comparison between Theory and Experiment 

The previous discussion has shown that the descrip­
tion of the limit experiment, which consists of the 
determination of the mean of an infinite ergodic 
sequence of single measurements, is described by an 
invariant degenerate random variable T'XI where 

(21) 

almost surely. The result obtained from this experi-

ment is an expectation value given uniquely by Eq. 
(21) or (16) and as such can be compared directly 
with a theoretical number. This suggests an alternate 
definition of the conditions under which the result of 
an experiment is suitable for comparison with theory. 
Namely, that any experiment, whether it consists of a 
finite or infinite number of single measurements, which 
can be described by an invariant degenerate random 
variable, gives a result which can be directly compared 
with theory.19 For any such experiment, even if it 
consists of one single measurement, gives almost 
surely a single unique result which is invariant under 
repetition and any repeated sequence of experiments 
described by invariant degenerate random variables 
is triviaIly ergodic. However, for essentially all 
measurements made in physics, the random variables 
X j , j = 1, 2, ... describing each single measurement 
of a sequence are neither invariant (XH1 ¥= Xj) nor 
degenerate [Eq. (2)]. In this case, any experiment 
which is described by invariant degenerate random 
variables is generated only by an infinite ergodic 
sequence of single measurements. 

As is the case for the Xi' the random variables 
describing the means of the first N single measure­
ments XN [Eqs. (3) or (9)] for any finite N are also 
neither invariant nor degenerate. Thus the empirical 
mean M.v obtained from N single measurements 
can not strictly be compared with theory. The lack of 
invariance of X.v under T' means that M N is not 
invariant under a change in the starting point of the 
sequence of N single measurements. Also, the lack of 
degeneracy of Xs means that MN can be anyone of 
many possible values taken on by XN and conse­
quently M.v is neither the almost surely unique 
expectation value, (f'XI ) nor (XN ) [Eq. (13)]. 

On the other hand, it is well known that one 
acquires knowledge by making comparisons between 
means of a finite number of single measurements and 
theoretical expectation values. Of course, such a 
comparison involves an approximation which states 
how "close" the empirical mean, which is one of the 
values of XN ; is to the limit expectation value. The 
well-known point20 we wish to stress again6 is that all 
such approximation statements relate an empirical 
result to a calculated expectation value and as such 
are also strictly valid only in the limit of an infinite 

19 This definition includes some. trivial types of single-measure­
ment sequences such as a sequence of flips of a two-headed coin, 
etc., for which each single measurement is described by an invariant 
degenerate random variable. However, for all these cases the result 
of each single measurement is known in advance and thus need not 
be considered at all. As a result, this type of measurement will not 
be considered further. 

20 A. PapouIis, Probability, Ralldom Variables alld Stochastic 
Processes (McGraw-Hill Book Co., New York, 1965), Chap. 8. 
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ergodic sequence. In fact, such statements can be 
easily constructed using the tools given in the last 
section by considering an infinite sequence of repeti­
tions of a sequence of N single measurements. 

3. The Loo(n, A, P) Space of Random Variables 

In the discussion given so far, we have concentrated 
on the properties of a sequence of random variables 
[X;] generated from one random variable Xl [Eqs. 
(2), (3), and (8)]. However, the discussion can easily be 
extended to cover properties of alI L.(n, A, P) spaces 
containing alI bounded random variables defined on 
the sample probability space (n, A, P). Since in actual 
measurements the numbers associated with the out­
comes of each single measurement are always finite, 
we restrict them to the space Loo(n, A, P) of almost 
surely bounded random variables.2l 

If one now considers sequences of random variables 
generated by repeated applications of T to any random 
variable in Loo [Eqs. (I)-(15)], then one has the same 
ergodic theorems as before but applying to every 
random variable in Lro .12 That is, if the limit measure 
FE, defined by Eq. (15), exists for every event E in A, 
then the ergodic theorems Eqs. (17) and (18) hold for 
every random variable in La:; . Equation (17) becomes 

a.s. lim T,Z.X = T'X = £rX (22) 
J,V-+CX) 

for every X in LfJ' Furthermore, if the sequence of 
single measurements is metrically transitive, or the 
ergodic hypothesis holds, then every random variable 
T' X is both invariant under T' and degenerate with its 
value given almost surely by (X), where (X) is taken 
with respect to the limit measure F. 

The main reason for this change of emphasis from 
one random variable to every random variable in 
Loo (n, A, P) is as follows: If the ergodic conditions 
are met, i.e., if the limit measure F exists and P is T 
indecomposable,12 then the one sequence of single 
measurements, which generates the sample space (n, 
A, P), is sufficient to yield empirical determinations of 
the expectation values of every random variable in 
L.An, A, P). For example, from the one sequence, 
an observer can empirically determine' the value of 
FE for every E in A merely by setting X = IE. This 
holds also no matter how complex E is [Eq. (5)] or 
how much dependence there is among the different 
single measurements of the sequence. 

This fact is, of course, well known in quantum 
mechanics for sequences of independent single meas­
urements made of the same observable on an en-

21 Reference 4, Sec. 9.4: The results obtained here are essentially 
the same for any Lr space with r ~ I; see Ref. 12. 

semble of identically prepared systems. In this case, 
if the observable 0 = ! O"P~ is being measured, it 
is clear that, besides empirically determining (0) from 
the one sequence, the expectation values of each 
observable in the algebra generated by the set of 
projection operators [Pal are determined. Of course, 
this requires that the observer know the actual result 
sequence (which corresponds to a point w in n) 
associated with the sequence of single measurements. 

4. The Ergodic Properties 

The previous discussion has shown us that the 
requirement, that an infinite sequence be ergodic, 
must be satisfied in order that the result obtained can 
be compared with any theoretical expectation value. 
It is worthwhile to stress at this point how really basic 
this requirement is to the process of knowledge 
acquisition. In particular, if the sequence does not 
satisfy an ergodic theorem, then none of the associated 
sequences of empirical means will converge. Such a 
sequence of single measurements, if carried out, will 
not give new knowledge as it does not yield any 
result which can be compared with other results or 
with theory. These points can be seen by consideration 
of an example of an attempted probability measure­
ment by a sequence of single measurements which 
does not satisfy an ergodic theorem. 

In this example there are only two outcomes 0 and 
I for each single measurement and the random 
variable for the outcome 1 for the jth single measure­
ment is given by Xj = IE1j in Eq. (2). Now suppose 
the sequence of single measurements is such that the 
probability of events Eli is given by PEl; = K for 
2" -::;, j < 2n+l, n = 0, 1, 2, ... and K = i for II even 
and K = 1 for n odd. For such a sequence, the average 
probability for outcome 1 for the first N measurements, 
P.yEll [Eqs. (4), (13), and (14)] oscillates between 
values of fr and 1} as N is increased. As a result the 
limit measure F of Eq. 15 does not exist and ergodic 
theorems of Eq. (17) or (18) are not satisfied. It is 
also clear that the empirical mean Ms, obtained from 
the first N single measurements, is meaningless even 
as an approximate measure of FElj as the latter does 
not exist. 

However, it must also be kept in mind that a 
segment of N single measurements can be part of 
many different infinite sequences of single measure­
ments, some of which may be ergodic. Thus while 
M.\' is useless as a measurement of P in the sequence 
described, it may be useful as a measurement of 
F.vEll in another sequence which consists of an 
infinite repetition of the first N single measurements. 
In particular, if, in the new sample probability space 
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of this new sequence, the measurements are inde­
pendent of one another and the transformation T on 
the new space is measure preserving, then this new 
sequence is ergodic12 and does give knowledge of the 
values of P1vE n • 

Another way to stress the really basic aspect of the 
ergodic theorem requirement is to note that if a 
sequence of single measurements did not satisfy an 
ergodic theorem, it would not be a measurement or 
even an observation. Consider, for example, the 
formation of an image of an object on a grid of 
photosensitive detectors behind a lens (the eye of an 
observer, for instance). In order to see or register 
anything, a large number of photons must be scattered 
off the object through the lens into the grid. Now an 
image is formed only if the relative frequency of 
firing of each detector in the grid converges to a limit 
which is proportional to the intensity of the scattered 
light. (For the eye, the observer would see the object.) 
On the other hand, if the relative frequency of firing 
of each detector did not approach a limit or satisfy an 
ergodic theorem, then one would not have an image 
but instead would have a meaningless jumble of light 
flashes or detector firings. 

It should be noted that this requirement does not 
mean that the image cannot vary with time. Rather, 
it means that the variation with time be sufficiently 
slow with respect to the incident photon current. In 
this case the sequence of grid firings, obtained during 
a time in which the photon current has not changed 
appreciably, can be considered as an initial segment of 
another independent, identically distributed sequence 
of infinite repetitions of the initial segment. In this 
case the initial segment can be a good approximation 
to the limit image. 

The above discussion has shown the importance of 
the ergodic theorem requirement on the sequence of 
random variables describing a sequence of single 
measurements. However, it is also important that the 
ergodic hypothesis be satisfied. The discussion pre­
ceding Eq. (20) showed that a P-decomposable 
sequence, rather than occurring in the entire space .0, 
occurs, almost surely, in one of the invariant subspaces 
C. 

Now if one can tell from the outcome of the single 
measurements in which invariant subspace the se­
quence lies, then either the probability P can be re­
placed by the conditional probability Pc on the 
original sample space, or a new sample space, in which 
C is the certain event and P is the probability measure, 
is used to describe the sequence. In either case the 
ergodic hypothesis is satisfied12 and the sequence of 
measurements yields an expectation value which can be 

compared with theory.22 This procedure is equivalent 
to discarding all but one of the terms in the C sum of 
Eq. (19) and replacing IC by 1. 

Unfortunately, the general situation may not be as 
pleasant as this. Besides the possibility that an observer 
may not know the invariant subspaces of .0, there is 
a worse difficulty. This is that even if one knows some 
of the invariant subspaces and that the sequence lies in 
one of them, it may turn out that the invariant 
subspace containing the sequence is even further P 
decomposable into still smaller invariant subspaces. 
This would be the situation if the probability measure 
in the sample probability space is mostly unknown to 
an observer. The reason for this is that the decom­
posability of a space is always considered relative to 
the points of the certain event .0 outside the P-null 
events. Thus, if one does not know which part of the 
space .0 is P null, one can not know whether or not 
it is almost surely decomposable under T. 

Furthermore, any experiments by which one would 
hope to determine whether or not the sequence was 
metrically transitive, such as determining the P-null 
structure of (.0, A, P), are infinite sequences of single 
measurements which give expectation values. Thus 
the problem of knowing whether or not the original 
sequence is metrically transitive is transferred to these 
new sequences. Further attempts at answering the 
problem merely transfer it to still other sequences, 
giving an infinite regression but no solution. 

A similar basic problem concerns how an observer 
knows that a sequence of single measurements satisfies 
an ergodic theorem. It is clear that he cannot directly 
verify the convergence of the empirical mean sequence, 
because he can at most obtain a finite number of 
terms. As is well known, knowledge of an arbitrary 
initial finite segment of an infinite sequence gives no 
information about the convergence properties of the 
sequence. 

From this discussion, it would appear that the 
problem of whether or not sequences of single meas­
urements satisfy an ergodic theorem and are metrically 
transitive would be of central importance to the usual 
application of probability theory to the measurement 
process. Yet these problems are usually not discussed 
in textbooks on probability and statistics. The basic 

22 As a simple example, consider a sequence in which the first 
single measurement consists of randomly selecting a coin out of a 
box of nickels and dimes and flipping it. All succeeding single 
measurements consist of repeated flips of the selected coin. For such 
a sequence, the points w of the certain event n in the sample 
probability space are the infinite sequences of the four outcomes, 
I1h, dh, I1t, and dt where d = dime. h = heads, etc. For this case n 
is almost surely P and T decomposable into the invariant subspaces 
Cd and Cn where Cd and Cn correspond to the respective selection 
of a dime and a nickel in the first single measurement and measured 
limit probability is Pc or Pc ,respectively. 

d n 
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reason for this is that essentially all measurements in 
science are assumed to fall into a special class in which 
the single measurements in a sequence are statistically 
independent and made of the same physical quantity 
on either the same system or on an ensemble of 
systems prepared under the same relevant conditions.2 

A sequence of random variables describing a sequence 
of single measurements, which satisfy these require­
ments, is an independent, identically distributed 
sequence and as such automatically satisfies both an 
ergodic theorem and the ergodic hypothesis. 12 For 
this case the convergence property is usually described 
in terms of the weak or strong law of large numbers or 
mean-square convergence and the ergodic hypothesis 
in terms of the Borel zero-one law. 23 

In conclusion, it should be noted that there are 
several papers which discuss ergodicity, especially in 
connection with the measurement process in quantum 
mechanics. 1O •24 The basic difference between our dis­
cussion and that of these other papers is that these 
other papers first assume a basic quantum dynamical 
description of each system or of the measuring 
apparatus. Then the ergodic aspects arise in the de­
scription of a sequence of measurements made on 
one system or of macroscopic systems whose micro­
scopic properties are at best only partly known. Our 
discussion is different in that no physical dynamical 
description of the behavior of single systems is 
postulated. The probability theory description of a 
sequence of single measurements requires the existence 
of a probability measure on the events in a sample 
space. But it is irrelevant to the theory whether or not 
these events are connected by any physical dynamics. 

III. FURTHER ASPECTS OF THE CONTACT 
BETWEEN THEORY AND EXPERIMENT 

A. Empirical Determination of P and P 

It is of interest to compare the consequences, with 
respect to the theory-experiment contact point, of 
the minimum ergodic requirements with those of the 
stronger independence and identical distribution 
requirements. It is to be expected that as the require­
ments on the sequences become more stringent, or 
that the amount of prior knowledge an observer has 
about the sequence increases, then the implication or 
meaning of "comparison" or "agreement" between 
theory and experiment becomes stronger. Such is 
indeed the case. 

It is necessary to digress slightly at this point to 
recall that with respect to events E, described in the 

23 Reference 4, pp. 228-230; Ref. 5, Chaps. VIII, X. 
24 A. Daneri, A. Loinger, and G. M. Prosperi, Nuovo Cimento 

44B, 119 (1966); Nucl. Phys. 33, 297 (1962); G. Ludwig, Rendiconto 
Scuola llIfernaziollale Fisica Enrico Fermi, Verelllla, Italy, 1960; 
Course 14: Ergodic Theory (Academic Press Inc., New York, 1962), 
pp.57-132. 

sample space (0, A, P), PE and PE are probabilities 
associated respectively with one measurement de­
scribed by E and with a limit average over an infinite 
ensemble of such unit measurements [Eqs. (14) and 
(15)]. Now if each single measurement of a sequence 
is performed on a different system, then, for the 
events E~j (for all !Y. and j), P and P can be thought of 
as the measures associated- with single systems and 
with infinitely large ensembles of systems, respectively. 
Similarly, for events of the type Ear n Ep2 n ... n 
E€m, P is the measure associated with a single 
m-body correlation measurement on a single set of m 
systems, whereas P is associated with an average of 
successive m-body correlation measurements on an 
infinite ensemble of systems. Thus P is associated with 
a single measurement on a single finite set of one or 
more single systems, whereas P is always associated 
with an infinite ensemble of systems. 

Now let us first consider the consequences of the 
ergodic requirements. From the discussion given 
earlier, it was seen that the limit means obtained from 
an infinite sequence of single measurements are 
associated with the measure P. This means that for 
any sequence of single measurements which are known 
to satisfy the ergodic requirements, the limit ensemble 
probability measure P is directly observable or em­
pirically measurable. However, the measure P asso­
ciated with single measurements is not directly 
observable or empirically measurable. That is, given 
any event E, the sequence of single measurements 
does not give one the value of PE. This can be seen 
directly from the relation between P and P [Eqs. (14) 
and (15)] where for general non-measure-preserving 
transformations there is no way to relate PE to PE, 
since each term in the j sum of Eq. (14) can be 
different. 25 

On the other hand, if one also knows for any 
sequence that T is measure preserving or that the 
sequence is stationary, 12 then the terms in the j sum of 
Eq. (14) are all equal. In this case, one has P = P, 
which has the consequence that both the limit­
ensemble probability and the single-measurement 
probabilities are directly empirically measurable. 
That is, for any event E, the sequence gives one 
empirical values of PE which can be set equal to PE. 

From these considerations, one arrives at the 
important point that the contact between theory and 
experiment, or the meaning of agreement between 
theory and experiment given by a stationary sequence 

25 At present, it is not clear how much empirical knowledge of 
the measure P can be obtained from general ergodic sequences. 
Although P cannot be directly determined, it is clear that at least 
some information about P can be obtained, other than that implied 
by the ergodic requirements. It is hoped to study this point in future 
work. 
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is stronger or implies more than does the contact 
given by a nonstationary ergodic sequence. This 
occurs because whatever one learns from a comparison 
of a limit empirical mean obtained from a stationary 
sequence to a theoretical number applies both to the 
limit ensemble and to each single measurement. How­
ever, whatever one learns from a similar comparison 
made for a more general ergodic sequence applies 
directly to the limit ensemble only. 

Now, if each single measurement consists of a 
preparation and measurement procedure and it is 
known that the sequence of single measurements is 
ergodic and stationary, then an observer can obtain 
from the sequence empirical knowledge of the proba­
bilities associated with each single system. However, 
this is usually not sufficient for physical measurements 
because these single-system probabilities may not 
represent an ensemble of independent or noninter­
acting systems. This is taken care of by the additional 
requirement that the ensemble of single measure­
ments be statistically independent of one another. 

In this case, then, for any sequence which is known 
to be independent and stationary or identically 
distributed,3.l2 knowledge of the values of the limit 
measure P also implies knowledge of the 'independent 
or noninteracting single-system probabilities. In this 
case, the implications or consequences of agreement 
or comparison between theory and experiment are 
quite strong compared to that for sequences which are 
known only to be ergodic. 

The cases discussed above represent rather extreme 
cases of a large amount of knowledge, the independ­
ence and identical-distribution (or stationarity) re­
quirements and a small amount of knowledge (the 
ergodic requirements only) which one may have about 
a sequence. There are also many intermediate cases. 
Consider, for example, a sequence which is known to 
satisfy the ergodic requirements and which is also 
known to be Markovian. In this case, the limit 
probabilities FEexl for each rx. are obtained from the 
transition matrix only26 and as such are independent 
of the initial probabilities PEal' Thus one sees that a 
measurement of the values of FEal gives no informa­
tion about the values of PEa.l' On the other hand, it is 
known that the values of PEa.; converge exponentially 
to FEa.l asj-+ 00. 26 Therefore, for Markov sequences 
of single measurements, one sees that knowledge of 
the values of FEal also implies knowledge, to an accu­
racy E, of all but M(E) values of PEa; for j = 1,2, ... , 
where M(E) is an exponential function depending on 
the convergence rate of the sequence. 

These considerations of the effect that different 

'6 Reference 4, Sec. 27. 

amounts of prior knowledge about a sequence of 
single measurements have on the consequences of the 
empirical results, stress the importance of under­
standing the dynamics of the knowledge acquisition 
process. They show an interesting feedback aspect in 
that the more prior knowledge one has about a 
sequence, the stronger the consequences are of the 
empirical results. If one knows only that a sequence is 
ergodic, then the empirical results imply less in that 
they give complete knowledge of the limit measure 
F and, at most, partial knowledge about the measure 
P.25 On the other hand, if one knows relatively more 
about a sequence, i.e., that it is independent and 
identically distributed,then the same empirical results 
imply more in that they give complete knowledge both 
of the limit ensemble and single-system measures. 

This feedback aspect means that one must be 
careful about making arbitrary assumptions of prior 
knowledge at the start of any measurement sequence. 
It may well be that such assumptions have nontrivial 
consequences for the measurement process, and pos­
sibly even for physics.6 Thus it may be that if one 
arbitrarily assumes that the preparation and measure­
ment procedures used to construct a single measure­
ment sequence give an independent identically 
distributed sequence, then the empirical results 
obtained from this and other sequences may not 
contradict and might even support the assumption. 
On the other hand, if one does not make this 
assumption, then exactly the same empirical results, 
which now are weaker in that they give at best only 
partial knowledge of P, may say nothing about 
whether the procedures used yield independent, 
identically distributed sequences. 

B. Connection with Quantum Mechanics 

Here we shall only indicate very briefly how contact 
might be made with quantum mechanics and leave 
for future work a more detailed discussion. In the 
previous discussion, it was seen that direct contact 
between a physical theory and experiment is made by 
means of limit empirical means obtained from infinite 
sequences of single measurements. Furthermore, this 
contact gives one direct knowledge of the measure 
F. Since quantum mechanics is a physical theory which 
provides expectation values for comparison with 
experiment, it is natural to equate FE" to Tr pP". 
That is, from Eq. (20) one writes for ergodic sequences 

T' X = L xaFE" = LX" TrpP" = Tr pO, (23) 
" " 

where the eigenvalue expansion of the observable 0 
is given by La xaP". The subscript j has been left off 
the event to indicate the independence of FE" from j. 
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It is clear from this equation that Tr pO represents 
the infinite ensemble of single measurements or that 
p represents an infinite ensemble of single systems. 27 

This occurs because of the direct relation between 
Tr pP" and the limit ensemble measure P. Furthermore, 
since the previous discussion has shown that one 
cannot directly relate P to P for general ergodic 
sequences,25 one cannot use Tr pO as a description of 
any single measurement of the sequences. Equiv­
alently, one cannot directly use p in this case to de­
scribe a single system. 

On the other hand, any sequence for which it is 
known that the single measurements are independent 
and made of the same physical quantity on an ensemble 
of identically prepared systems is a sequence for which 
P = P. In this case, Tr pO refers both to the infinite 
ensemble of single measurements as well as to each 
single measurement. In this case, it would seem that 
p can indeed represent a single system. 

These aspects may throw some light on the con­
troversy regarding whether a state in quantum me­
chanics represents an infinite ensemble of systems or 
a single system.27 The preceding discussion suggests 
that, if one can show that, starting from general 
ergodic sequences, it is possible to acquire sufficient 
knowledge of the physical world to enable him to 
construct independent identically distributed se­
quences, then p can represent either a limit ensemble 
or a single system. However, if such knowledge is not 
rigorously attainable, then p can exactly represent an 

27 G. Ludwig, "Solved and Unsolved Problems of the Measurement 
Process", translated by E. Wilip from Werner Heisenberg and 
COllte'!,porary Physics, F. Bopp, Ed. (F. Vieweg ,and Sohn, Braun­
schweIg, 1961), pp. 150-181; H. Ekstein, Ergeb. Exakt. Naturwiss. 
37, 150 (1965); D. Bohm and J. Bubb, Rev. Mod. Phys. 38 453 
(1966). ' 

infinite ensemble only. The problem of whether such 
knowledge is attainable or not is not trivial in quantum 
mechanics as other work has shown.6 

IV. CONCLUSION 

In this work, we have seen, within a probability­
theory framework, that there are minimum ergodic 
conditions which a sequence of single measurements 
must satisfy to serve as a point of contact between a 
physical theory and experiment. That is, the sequence 
must satisfy an ergodic theorem and be metrically 
transitive. Although these are much weaker conditions 
than the usually assumed independence and identical 
distribution, they indicate that, as is the case with 
quantum mechanics,6.28 probability theory does not 
give a sufficiently complete framework for the descrip­
tion of the process of measurement or knowledge 
acquisition. For one thing, the question is left open 
of how an observer is to know that a sequence is 
ergodic. This question is particularly relevant to the 
description of the basic sequences of single measure­
ments by which one tests for the homogeneity of 
space-time. 

In spite of these difficulties, such a discussion, as 
has been given here, can help to clarify the basic 
problems of measurement. Also, it does suggest other 
approaches to the understanding of the basic dynamics 
of the knowledge acquisition process and how it can 
be relevant to physics. 
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The phonon propagator for an arbitrary crystal is the analytic continuation to the complex z plane of 
the Fourier coefficient of the imaginary time correlation function Dw(k; u) = (TAki(u)AtAO», whereAki 
is the field operator for phonons with wavevector k and polarization or branch index J. Considering 
D(k; u) as a 3r x 3r matrix whose elements are labeled by j and j' (j,/ = 1,2, ... , 3r), where r is the 
number of atoms in a primitive unit cell of the crystal, the restrictions imposed on the form of this matrix 
by the symmetry and structure of the crystal are determined here. In particular, it is proved that the 
element Dw(k; u) vanishes unless j and j' label normal modes of vibration which transform according 
to the same row of the same irreducible multiplier representation of the point group of the wavevector 
k, G.(k). As a corollary to this result it follows that if no two modes labeled by the wavevector k exist 
whose frequencies are different, but whose associated eigenvectors transform according to the same 
irreducible multiplier representation of G.(k), the matrix Dw(k; u) is diagonal inj andj'. 

In a recent paper l it was shown that the phonon 
propagator Dii.(k; z) for an anharmonic crystal of the 
rocksalt structure is diagonal in the phonon branch 
indices j and j' when k = O. This result was obtained 
by showing that the proper self-energy matrix 
Pii,(k; z) has the same property and invoking the 
Dyson equation2 

Dil(k; z) = Oii,D~O)-1(k; z) - PjAk; z) (1) 

which relates the matrices P(k; z) and D(k; z). In 
this equation, DjO)(k; z) is the free-phonon propagator, 

D(O)(k' z) = 2wlk) 1 
l' (31i w~(k) _ Z2 ' 

(2) 

where w;(k) is the frequency of the normal mode of a 
harmonic crystal described by the wavevector k and 
the branch indexj, and (3 = (kBT)-l. In Eqs. (1) and 
(2) z is a complex variable. 

That Pjj'(O; z) is diagonal in j and j' was proven 
by a term-by-term examination of the perturbation 
series for the proper self-energy. This; however, is a 
rather unsatisfactory way ~f demonstrating what must 
be a consequence of the symmetry and structure of the 
crystal. In the present note we present a group theo­
retic analysis of the structure of the phonon propagator 
Djj'(k; z) as a matrix in the indices j and j' for an 
arbitrary crystal, when the wavevector k refers to one 
of the points of symmetry in the first Brillouin zone 
of the crystal, i.e., when the point group of the wave­
vector k, Go(k) contains more than the identity. 

1 1. P. Ipatova, A. A. Maradudin, and R. F. Wallis, Fiz. Tverd. 
Tela 8, 1064 (1966); [SOy. Phys.-Solid State 8,850 (1966)]. 

2 A. A. Maradudin and A. E. Fein, Phys. Rev. 128,2589 (1962). 
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Because the type of calculation we describe here is 
somewhat similar to the determination of space group 
selection rules for two-phonon infrared and Raman 
processes, the methods employed here may be of use 
in the context of the latter problem as well. 

The phonon propagator Djj'(k; z) is the analytic 
continuation to the complex z plane of the Fourier 
coefficient2 

D (k " ) - IlPd -inw"'D (k' ) ;1' ,tWI - - u e j1" U , 

(3 ° 
WI = 2rrl/(3Ii, (3) 

of the imaginary time correlation function 

Dj1'(k; u) = (TAk;(u)Atr(O», -(3 < u < (3. (4) 

In Eq. (4) Akj is the phonon-field operator for the 
normal mode of the harmonic crystal described by 
the wavevector k and the branch index j. It is given in 
terms of the phonon creation and destruction operators 
bt; and bki by 

Ak; = bk ; + b:!::kj = A:!::kj' (5) 

The operator Aki(u) is defined by 

(6) 

where H is the crystal Hamiltonian. The operator T 
orders a product of u dependent operators from right 
to left in the order of increasing arguments. Finally, 
the angular brackets ( ... ) denote an average carried 
out with respect to the canonical ensemble described 
by the Hamiltonian H. 

For our purposes it is convenient to rewrite the 
correlation function Dii,(k; u) in a different form. 
The relation between the displacement U(lK) of the 
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Kth atom in the lth unit cell of the crystal and the 
operator Aki is given by 

uilK) = (_li_)t 2 eiK I kj) eik'XwAkj' (7a) 
2NMK kj (w/k»! 

Here, (1. labels the Cartesian axes, N is the number of 
unit cells in the crystal, and M K is the mass of the Kth 
kind of atom in a primitive unit cell. w j(k) is the 
frequency of the normal mode of the harmonic 
crystal which is described by the wavevector k, and 
the phonon branch index j, which assumes the values 
1, 2, ... , 3r, where r is the number of atoms in a 
primitive unit cell of the crystal. e(K I kj) is the 
associated unit polarization vector. The vector 
xU) is the position vector of the origin of the Ith unit 
cell in the crystal, and we will denote the position of 
the Kth ion in a primitive unit cell relative to the origin 
in the unit cell by X(K). This origin must be chosen 
in such a way that the position vector of the atom 
(lK) is given by x(l) + X(K) == X(/K). The allowed 
values of k are determined by the cyclic boundary 
condition, and they are uniformly distributed through­
out the first Brillouin zone of the crystal with a 
density Vj(27r)3, where V is the volume of the crystal. 

The eigenvectors {e(K I kj)} and the freqtlencies 
{wj(k)} are related through the eigenvalue equation3 

2 Cop(KK' I k)ep(K' I kj) = w;(k)eo(K I kj), (8) 
K'P 

where C(k) is a 3r x 3r Hermitian matrix called the 
Fourier-transformed dynamical matrix. The explicit 
expression for the elements of C(k) will not be required 
in what follows. 

The eigenvectors {e(K I kj)} satisfy the orthonor­
mality and closure conditions4 

2 eiK I kj)e:(K I kj') = bjj" (9a) 

2 eiK I kj)e;(K' I kj) = bKK,bop · (9b) 
j 

The relation inverse to Eq, (7) is readily found to be 
1 

Akj = C(~~k)r ~ (MK)te:(K I kj)e-ik.x<ll lIo(lK). (7b) 

With this result the correlation function Djj'(k; u) 
can be written equivalently as 

Djj.(k; u) = 2.- [w;(k)wAk)]t 22 2 (M KMK,)t 
liN II' H' op 
X e:(K I kj)ep(K' I kj')e-ik.(XW-XU')) 

X <TUo(/K; U)Up(l'K'; 0», (10) 

3 See, for example, M. Born and K. Huang, Dynamical Theory of 
Crystal Lattices (Oxford University Press, Oxford, 1954), p. 297. 
Note that the matrix which we have denoted by C(k) is called D(k) 
by these authors. 

• Reference 3, p. 298. 

To determine the structure of Djj,(k; z), regarded as 
a 3r x 3r matrix in the branch indices j and j', it 
suffices to study the correlation function Djj'(k; u). 
The operations of evaluating its Fourier coefficient 
and continuing the result to the complex z plane 
cannot alter this structure. 

An operation of the space group G of the crystal 
can be written in the Seitz5 notation as {S I yeS) + 
x(m)} and is defined by its effect on the position 
vector X(lK), 

{S I yeS) + x(m)}x(lK) = SX(lK) + yeS) + x(m) 

= x(LK). (11) 

The matrix S is a 3 x 3 real, orthogonal matrix which 
describes a proper or improper rotation. x(m) is a 
lattice translation vector, and yeS) is a translation 
through less than any primitive translation vector of 
the crystal. Space groups for which yeS) is zero for 
every rotation S are called symmorphic. The second 
equality in Eq. (11) expresses the fact that because the 
operation {S I yeS) + x(m)} is one which restores the 
crystal to itself the lattice site (/K) must be taken into 
an equivalent site which we label by (LK). Where a 
more explicit notation is not required, we use the 
convention of labeling by capital letters the site into 
which a given site is transformed by the operation 
{S I yeS) + x(m)}. 

With each operation {S I yeS) + x(m)} we associate 
a linear operator O({S I yeS) + x(m)}) which is 
defined through its effect when applied to a scalar 
function ofx{lK): 

O({S I v(S + x(m)})f(x(lK» 

=f({S I yeS) + x(m)}-lx(lK», (12a) 

where we have explicitly that 

{S I yeS) + x(m)}-l = {S-l I -S-lV(S) - S-lx(m)}. 

(12b) 

When the crystal is subjected to a symmetry opera­
tion {S I yeS) + x(m)} which sends the lattice site 
(lK) into the site (LK), the displacement vector 
U{/K) associated with this site is both rotated in the 
same sense as the crystal and transferred to the site 
(LK). Its law of transformation can therefore be 
expressed in the form 

O({S I yeS) + x(m)1)u(x(lK»O-\{S I yeS) + x(m)}) 

= Su({S I yeS) + x(m)}-lx(lK», 

or, in view of Eq. (11), as 

O({S I yeS) + x(m)})u(LK)O-l({s I yeS) + x(m)}) 

= SU(lK). (13) 
5 F. Seitz, Ann. Math .. 37, 17 (1936). 
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Because the symmetry operation {S I v(S) + x(m)} 
sends the crystal into itself, the crystal Hamiltonian 
must be invariant under the application of the operator 
O({S I v(S) + x(m)}), i.e., 

O({S I v(S) + x(m)})HO-\{S I v(S) + x(m)}) = H. 

(14) 

In fact, this result together with Eq. (13) enables one 
to obtain the independent nonzero elements of the 
force constant tensors which appear when the crystal 
potential energy is expanded in powers of the atomic 
displacements. 

Combining Eqs. (13) and (14) we obtain a useful 
result starting from the identity 

(uilK; u)uP(I'K'; 0» 
= (Ua(lK; U)Up(l'K'; O)O-\{S I v(S) + x(m)}) 

X O({S I v(S) + x(m)}) 

= (O({S I v(S) + x(m)})ua(lK; u) 

x O-I({S I v(S) + x(m)}) 

X O({S I v(S) + x(m)})up(l'K'; 0) 

X O-I({S I v(S)+ x(m)}) 

= .2 S~IISpv(ui{S I v(S) + x(m)}-lx(IK); u) 
IIV 

X u/{S I v(S) + x(m)}-lx(['K'); 0». (15) 

The second equation is a consequence of the cyclic 
invariance of the trace, while the third is a consequence 
of the fact that according to Eq. (14), the operator 
O({S I v(S) + x(m)}) commutes with the crystal 
Hamiltonian. Using Eq. (11) we can write finally that 

(uiLK; u)up(L'K'; 0» 

= .2 SaIlSPv(UIl(lK; u)u/I'K'; 0». (16) 
IIv 

Before discussing the restrictions on the form of the 
correlation function Djj'(k; u) imposed by the sym­
metry and structure of a given crystal, we establish 
several general properties of this function which hold 
for any crystal. 

We note first, that because wj(k) and ea(K I kj) are 
periodic functions of k, with the periodicity of the 
reciprocal lattice,6 

wj(k + 27Tb) = wj(k), 

e(K I k + 27Tbj) = e(K I kj), 

(17a) 

(17b) 

where b is an arbitrary translation vector of the 
reciprocal lattice, the correlation function D jj'(k; u) 
also has the same periodicity in k, 

Djj'(k + 27Tb; u) = DjAk; u). (18) 

• A. A. Maradudin, E. W. Montroll, and G. H. Weiss, Theory of 
Lattice Dynamics in the Harmonic Approximation (Academic Press 
Inc., New York, 1963), p. 77. See also Ref. 8 below. 

If we write Dji,(k; u) as 

1 Djj'(k; u) = O(u) -Z.2 e-PEmeu(Em-Enl(ml Akj In) 
mn 

X (nl Akj' 1m) 

+ O( -u) 1. .2 e-PEme-u(Em-Enl 

Zmn 

x (ml A_kj' In)(nl Akj 1m), (19) 

where O(u) is the Heaviside unit step function, and 
where Em is the energy of the eigenstate 1m) and Z is 
the crystal partition function, the following two 
results follow immediately if we recall Eq. (5): 

Djj'( -k; u) = Dj'j(k; -u), (20) 

* Djj'(k; u) = Dj'j(k; u). (21) 

If we now invoke time-reversal symmetry and time­
translation invariance, we obtain in addition that 

Djj'(k; u) = (TAtAO)Akl-u» 

= (T A_kr(u)AklO» 

= Dj';( -k; u). (22) 

Combining Eqs. (20)-(22) we see that in general 
Djj'(k; u) is an element of a Hermitian matrix and is 
an even function of u, with the property that 

Djj'( -k; u) = D:r(k; u). (23) 

In the special case that the point group of the 
crystal contains the inversion, i.e., when the crystal 
possesses a center of inversion, the matrix Djj'(k; u) 
is not just Hermitian, it is real and symmetric. To show 
this, let us denote the inversion by I, and label the 
site into which UK) is taken by the space-group 
operation {I I v(1) + x(m)} by (ii<). Then with the 
conventional choice of phases7,8 

e:(i< I kj) = e-ik-[X(i(l+x(KlJeiK I kj), (24) 

together with the relation 

Ix(l) = xCi) + xCi<) - {I I v(l) + x(m)}x(K), (25) 

which follows directly from Eq. (11), we obtain from 
Eqs. (10) and (16) 

Djj'(k; u) = ~ (wj(k)wrCk»!.2 I.2 (Mi(MK')~ 
liN l/' KK' ap 

X eii( I kj)e-ik'[X(i(l+X(Kl] 

X e;(i(' I kj')~ik.[x(ii'l+X(K'l] 
X eik-[x(l)+x(iil+x(Kl-x(I'l-x(i('l-x(K'l] 

X (Tua(ii(; u)uP(i'i('; 0». (26) 

7 M. Lax, Phys. Rev. 138, A793 (1965). 
8 A. A. Maradudin and S. H. Vosko, Rev. Mod. Phys. 40, 1 

(1968). 
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Replacing (lK) and (l' K') by (ii<) and (i'i<') as summa­
tion variables we have finally that 

DiJ'(k; u) = DirC -k; u). (27) 

Combining Eqs. (23) and (27) we see that Dit(k; u) 
is real for crystals possessing a center of inversion. 
From Eq. (21) it follows that Dij'(k; u) is symmetric 
in j and j' in this case. Finally, from Eq. (23) we find 
that Dw(k; u) is an even function of k for such 
crystals (as well as being even in u). 

We now turn to the determination of the restrictions 
imposed on Dit(k; u) by the symmetry and structure 
of a given crystal. 

When the result given by Eq. (16) is substituted into 
Eq. (10) the latter becomes 

1 

D;;.(k; u) = (2/IiN)(w/Sk)w r (Sk))"[ 

x I I I I (MKMK,)!e:(K I kj)ep(K' I kj') 
II' KK' ap IlV 

X e-iSk{SX<O-SXO')](TuiLK; u)uv(L'K'; 0) 

X SllaSvP' (28) 

In writing this result we have used the fact that 
w;(k) considered as a function of k has the full point 
symmetry of the crystal,S 

(29) 

In addition, we have noted that because the symmetry 
operation {S I yeS) + x(m)} takes an atom of type K 

into an atom of type K, which must be the same kind 
of atom as K, we must have that 

(30) 

If now we use the result, which follows from Eq. 
(11), and of which Eq, (25) is a special case, that 

Sx(l) = x(L) + x(K) - {S I yeS) + x(m)}x(K), (31) 

we obtain 
2 1 1 

D;rCk; u) = - [w/Sk)wr(Sk)]:! I I I (MKMK,)"[ 
liN II'KK'IlV 

x {~a S:aCKKl I k; {S I yeS) + x(m)})e:(Kl I kj)} 

x {~ Svp(K'K2 1 k; {S I yeS) + x(m)})ep(K21 kj')} 

x e-iSk.[xUl-xO')](Tull(lK; U)Uv(l'K'; 0». (32) 

In writing this result we have introduced the 3r x 3r 
matrix S(k; {S I yeS) + x(m)}) whose elements are 
given explicitly by 

Sap(KK' I k; {S I yeS) + x(m)}) = SapO[K, KO(K'; S)] 
X eiSk{x(K)-(S [Y(S)+x(m))x(K'IJ. (33) 

Moreover, we have made more explicit the fact that 
K is the label of the atom into which the atom K is 
carried by the space-group operation {S I yeS) + 
x(m)} by writing 

(34) 

That only the rotation S is required to relate K to K 

uniquely is a consequence of the fact that a pure 
translation of the crystal leaves the basis label K of the 
site UK) unchanged, and of the fact that the translation 
vector yeS) is uniquely specified once S is given. 

It follows from Eq. (4,8) of Ref. 8 that as long as 
the operation {S I yeS) + x(m)} is not one of the 
operations of the space group of the wavevector k, 
Gk , i,e" as long as 

Sk ¥= k - 217b(k; S), (35) 

where b(k; S) is a translation vector of the reciprocal 
lattice, then 

{~S:a(KKll k; {S \ yeS) + x(m)})e:(Kl\ kj)} 

x { I SvP(K' K21 k; {S I yeS) + x(m)})ep(K21 kj')} 
K2P 

= e:(K I Skj)ev(K' I Skj'). (36) 

Combining Eqs, (32) and (36) we find that D;j'(k; u) 
has the point symmetry of the crystal, 

Dir(k; u) = Dir(Sk; u), Sk ¥= k - 217b(k; S). (37) 

Equation (37) tells us that if we know the form of 
Dw(k; u) for a given value of k, we know it for all 
values of the wavevector obtained by applying the 
operations of the point group of the crystal (i.e., of 
the crystal class) to k. That is, we know Dji,(k; u) for 
all other wavevectors in the star of k. It only remains 
to determine the structure of Djj'(k; u) at a given value 
of k. 

To achieve this we must do two things, The first is to 
restrict the operations {S \ yeS) + x(m)} of the space 
group G of the crystal which appear in Eqs. (32) and 
(33) to those which comprise the subgroup of G 
called the space group of the wavevector k, Gk • 

This latter group consists of all operations {R I vCR) + 
x(m)} of the space group G whose rotational elements 
{R} have the property that they leave the vector k 
invariant, modulo 217 times a translation vector of the 
reciprocallattice9 : 

Rk = k - 217b(k; R), (38) 

This equation defines the reciprocal lattice vector 

• To distinguish the rotational operations in the group Gk from 
those of the full group G, we denote the former by {R} and continue 
to denote the latter by {S}. 
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b(k; R), which clearly is a function of both the given 
wavevector k and of the particular rotation R which 
we are considering. It should also be clear from the 
property of the first Brillouin zone for a crystal that 
no two points in it can differ by more than 21T times 
a translation vector of the reciprocal lattice, that 
b(k; R) can be nonzero only when k lies on the 
boundary of the zone.1° Finally, we note that the 
collection of rotational elements {R} itself forms a 
group, which we call the point group of the wave­
vector k and denote by Go(k).l0 The order of this point 
group, which is one of the 32 crystallographic point 
groups, will be denoted by h. 

When the symmetry operations appearing in the 
right-hand side of Eq. (32) are those of the group Gk , 

this equation takes the form 

x {~S:~(KKI I k; {R I vCR) + x(m)})e:(Kl I kj)} 

X {I Svp(K'K21 k; {R I vCR) + x(m)})ep(K21 kn} 
K2P 

X e-ik.[xw-x(l')](Tull(lK; u)u.(l'K'; 0), (39) 

where now 

S~P(KK' I k; {R I vCR) + x(m)}) = R~pb(K, KO(K'; R)) 
X eik.[x(K)-{R I v(R)+x(m)}x(K')l. (40) 

The reason that the exponent on the right-hand side 
of Eq, (40) is as simple as it is, is that 

x(K') - {R I vCR) + x(m)}x(K') 

is a translation vector of the crystal, as can be seen 
directly from Eq, (31). 

The set of 3r-dimensional matrices S(k; {R I vCR) + 
x(m)}) can be shown to provide a representation of 
the group Gk • 8.11 However, we will not exploit this 
property of these matrices. Instead, we prefer to work 
with a new set of 3r-dimensional matrices {T(k; R)}, 
which is obtained from the S(k; {R I vCR) + x(m)}) by 
the relation 

T~P(KK' I k; R) = eik.(v(R)+x(m» 

X S~P(KK' I k; {R I vCR) + x(m)}) 
= R~pb(K, KO(K'; R))eik.[x(K)-Rx(K')]. (41) 

The matrices {T(k; R)} stand in a one-to-one corre­
spondence with the elements of the point group 
Go(k). However, they do not provide an ordinary 

10 G. F. Koster, in Solid State Physics, F. Seitz and D. Turnbull, 
Eds., (Academic Press Inc., New York, 1957), Vol. 5, p. 173; in 
particular, see p. 223. 

11 H. W. Streitwolf, Phys. Stat. Solidi 5, 383 (1964). 

representation of this group, but rather provide a 
multiplier representation of it ,12,13 in the sense that the 
multiplication rule for any two matrices T(k; R i ) and 
T(k; R j ) is8 

T(k; Ri)T(k; R j) = 4>(k; Ri , Rj)T(k; RiR j), (42a) 

4>(k; Ri , Rj) = exp 21Tib(k; Ri1
). v(Rj)' (42b) 

We see from Eqs. (42) that the matrices {T(k; R)} 
provide an ordinary representation of GoCk) for an 
arbitrary crystal if k lies inside the first Brillouin zone, 
because then b(k; Ri1

) vanishes. The matrices 
{T(k; R)} also provide an ordinary representation of 
Go(k) for all wavevectors k inside or on the boundary 
of the first Brillouin zone for a crystal with a sym­
morphic space group, because for such crystals 
v(Rj) vanishes for each operation R j . 

Substituting Eq. (41) into Eq. (39) we obtain 

DjrCk ; u) = l... (w;Ck)wrCk))! I I I (MKMKi 
liN 71' KK' IlV 

X {~ TIl:(KKll k; R)e:(Kll kj)} 

X {LTvp(K'K2Ik;R)ep(K2Ikn} 
K2P 

X e-ik'[XW-xO')l(TU/l(lK; u)u.(l'K'; 0). (43) 

The second thing we must do to determine the 
structure of Djj.(k; u) is to generalize our notation 
for labeling the branches of the phonon spectrum. 
Up to now it has been sufficient to label them by a 
single index j (= 1, 2, ... , 3r) and to assign the 3r 
frequencies for a given k to these branches by a con­
vention such as w~(k) ~ W;+l (k). However, in order 
to proceed further in our discussion, we must label 
the branches of the phonon spectrum in a way that 
displays explicitly the possible degeneracies of the 
modes and their symmetry properties. Among the 3r 
branches of the phonon spectrum corresponding to a 
given value of k there may be several which are 
degenerate. To take account of this possibility we 
could replace j by a double index Cat1.) , where a 
labels the distinct frequencies, while t1. differentiates 
among the j(J linearly independent eigenvectors 
e(K I kat1.) (t1. = 1,2, ... ,f(J) associated with the 
frequency w(J(k). Thus the normal mode labeled by 
k and a is assumed to be j(J-fold degenerate. 

The matrix T(k; R) can be shown8 to commute with 
the Fourier transformed dynamical matrix C(k) for 
each operation R in the point group Go(k). From 
Eq. (8) we see that this fact has the consequence that 

12 G. Ya. Liubarskii, The Application of Group Theory in Physics 
(Pergamon Press, Inc., New York, 1960), p. 95. 

13 P. Rudra, J. Math. Phys. 6, 1273 (1965). 
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if the 3r-component vector e(kO'A) is an eigenvector of 
C(k) corresponding to the eigenvalue w~(k), then the 
vector T(k; R)e(kO'A) is also an eigenvector of C(k) 
with the same eigenvalue w~(k). However, because 
there are only fa linearly independent eigenvectors 
{e(kO'A)} (A = 1,2, ... ,fa) corresponding to the 
eigenvalue w~(k), the vector T(k; R)e(kO'A) must be 
some linear combination of these fa eigenvector:.: 

fa 
T(k; R)e(kO'A) = L Tl~l(k; R)e(kO'A'). (44) 

;"=1 

The h faX fa matrices {'t(a)(k; R)} stand in a one-to­
one correspondence with the operations {R} of the 
point group Go(k), and can be shown8 to provide a 
unitary multiplier representation of this group. In fact, 
in the absence of accidental degeneracy the repre­
sentation of Go(k) provided by the matrices {'t(a)(k; R)} 
is irreducible.14 

However, in the most general case the index a 
cannot be used to label the irreducible representations 
of Go(k) contained in the representation of this group 
provided by the matrices {T(k; R)}. The index a has 
been introduced to label the distinct eigenvalues of 
C(k). It can happen that the eigenvectors corresponding 
to two distinct eigenvalues w~(k) and w~,(k) (a,¥' a') 
which have the same degeneracy, i.e., fa = fa" are 
transformed into the same linear combinations of 
each other under multiplication by the matrix 
T(k; R). That is, we have the relations 

fa 

T(k; R)e(kO'A1) = L Tt!;.,(k; R)e(kO'A~), (45a) 
;','=1 

fa' 
T(k; R)e(kO"A2) = L Tj::l.(k; R)e(kO"A~) (45b) 

;',"=1 

for each R in Go(k), where 't(a)(k; R) = 't(a')(k; R). 
In other words, the two sets of eigenvectors {e(kO'A)} 
and {e(kO" A)} associated with unequal frequencies 
waCk) and wa,(k), respectively, transform according 
to the same irreducible multiplier representation of 
Go(k). To allow for such possibilities, we replace the 
single index a by a double index (sa), where s labels 
the irreducible representations of Go(k) contained in 
the representation {T(k; R)}, while a (= 1,2,'" ,cs) 

is a repetition index which distinguishes the different 
Is-fold degenerate eigenvalues w;'(k) whose associated 
eigenvectors {e(ksaA)} transform according to the sth 
irreducible representation. The numbers Is and Cs 

must therefore satisfy the relation 

Lises = 3r. (46) 

14 V. Heine, Group Theory in Quantulll Mechanics (Pergamon 
Press, Inc., New York, 1960), p. 44. 

From the preceding discussion we are led to the 
conclusion that in its most general form Eq. (44) can 
be written as 

f" 

T(k; R)e(ksQA) = L Tl~l(k; R)e(ksQA'), 
;"=1 

;. = 1, 2, . . . ,Js' (47) 

a = 1, i, ... , es • 

The matrices 't(s)(k; R) have been tabulated by 
Kovalev15 for k vectors corresponding to symmetry 
points in the first Brillouin zone for crystals belonging 
to all 230 space groups. 

The determination of which irreducible multiplier 
representations of Go(k) are contained in the repre­
sentation {T(k; R)} is carried out by the use of the 
character orthogonality theorem which yields the 
result that13 

1 
es = h ~X(S)(k; R)*X(k; R) (48) 

where 
X(S)(k; R) = Tr 't(s)(k; R), (48') 

X(k; R) = Tr T(k; R). (48") 

Substituting Eq. (47) into Eq. (43), we obtain 
finally the conditions imposed on DsaJ.;s'a'J.,(k; u) by 
the symmetry and structure of a crystal: 

X Dsa;'[:s'a'A.(k; u). (49) 

When the representation matrices {'t(s)(k; R)} of the 
irreducible multiplier representations sand s' of Go(k) 
contained in the representation {T(k; R)} are sub­
stituted into the right-hand side of Eq. (49) for each 
of the operations R of Go(k), the resulting equations 
determine the independent nonzero elements of the 
matrix DsaJ.:s'a'J.'(k; u) and any relations among them. 

Somewhat less detailed information about the 
structure of this matrix is obtained if we divide both 
sides of Eq. (49) by h, the order of Go(k), and then 
sum both sides over the elements R of Go(k). The 
orthogonality of the representation matrices expressed 

15 O. V. Kovalev, Irreducible Representations of the Space Groups 
(Academy of Sciences of the Ukrainian S.S.R., Kiev, 1961) 
[English trans\.: Gordon and Breach Science Publishers, Inc., New 
York, 1964]. It has been pointed out to one of the authors (A.A.M.) 
by Dr. J. Zak that the irreducible representations associated with 
severak k vectors corresponding to symmetry points on the boundary 
of the first Brillouin zone have been omitted from Kovalev's tables. 
For example, the symmetry points for the cubic system missing from 
Kovalev's book are (I) simple cubic: (kyo 1Tla, k,l, (kyo 1Tla, 0), 
(1Tla, k y , k,); (2) face·centered cubic: (k" 21Tla, k,), (k,. 21Tla, k,), 
(1Tla, k y , (21Tla) - ky); (3) body centered cubic: (1Tla, 1Tla, 0), 
(k" (21Tla) - k" 0), where a is the lattice parameter. These omissions 
will be rectified in a forthcoming book by Casher, Gluck, Gur, and 
Zak. 



                                                                                                                                    

PHONON PROPAGATOR OF AN ANHARMONIC CRYSTAL 531 

yields the result that 

Dsa).;s'a,).,(k; u) = r5 ss ,r5).).,(111s) L Dsa).,:sa,).,(k; u). (S1) 
)., 

We can express this result in the conventional notation 
by the statement that unless j and j' label modes which 
transform according to the same row of the same 
irreducible representation of Go(k), the matrix 
element DjAk; u) vanishes. As a corollary to this 
result we also see from Eq. (SI) that if no irreducible 
multiplier representation of Go(k) appears more than 
once in the reduction of the representation {T(k; R)} 
(in which case we can suppress the repetition indices 
a and a'), then D;r(k; u) is diagonal in the indices j 
andj'. 

It should be pointed out that the results given by 
Eqs. (49) and (SI) hold for any value ofk inside or on 
the boundary of the first Brillouin zone of the crystal. 
However, at a general point of the zone the point group 
of the wavevector k, Go(k) consists of only the 
identity e. There is only one irreducible representation 
of this group, and it is one-dimensional with 
X(l)(k; e) = 1. Meanwhile X(k; R) is 3r, so that 
according to Eq. (48) Cl = 3r. From Eqs. (49) and 
(SI) we see that there is therefore no simplification in 
the structure of the matrix D(k) which is required 
by symmetry for a general value of k. The results 
given by Eqs. (49) and (SI) can predict simplifications 
in the structure of D(k) only when k is a point of 
symmetry inside or on the boundary of the first 
Brillouin zone, i.e., when k is a point for which Go(k) 
consists of more than the identity. 

There is a final degeneracy of Djj'(k; z) which is 
not predicted by the preceding treatment. This is that 
for z ~ 0, Djj'(O; z) vanishes ifeitherj orj', or both, 

R E sc. 3C2 

1.(0; R) 6 o -2 2 

The reduction of the representation of Go(O) provided 
by the matrices {T(O; R)} yields 2r15 , where r l • is a 
conventional name for the (three-dimensional) polar­
vector irreducible representation of the point group 
Ok .10 One irreducible representation r 15 clearly 
corresponds to the three acoustic modes, while the 
second corresponds to the three optical modes. The 
fact that r l • appears twice in this reduction ordinarily 
would imply that Djj'(O; z) is not diagonal in j and 
j', according to the discussion following Eq. (51). 

refer to an acoustic branch of the phonon spectrum. 
This conclusion follows from the fact that as a 
consequence of infinitesimal translational symmetry 
Wj(O) vanishes if j refers to one of the three acoustic 
branches.16 As a result of this, DjO)(O; z) vanishes 
for z ~ 0, for j an acoustic branch. From the Dyson 
equation (1) it is seen that if Pjj'(O; z) is finite, the 
vanishing of DjO)(O; z) implies the vanishing of 
Djj'(O; z). In fact it is shown in Appendix A of 
Ref. 1 that infinitesimal translational invariance forces 
Pjj'(O, z) to vanish if either j or j', or both, refer to an 
acoustic branch, from which our original statement 
follows. 

To conclude this note we return to the problem 
which prompted the investigation described in it. We 
consider the structure of the phonon propagator 
corresponding to the wavevector k = ° for a crystal 
of the rocksalt structure. If we neglect for the moment 
the macroscopic electric field associated with the 
longitudinal optical modes of long wavelengths, the 
point group of this wavevector is Ok' Because no 
operation of the space group of the rock salt structure 
0l~ can interchange the two sublattices, the matrix 
element T,,{i(KK' I 0; R) takes the simple form in the 
present case 

T~P(KK' 10; R) = R~pr5(K, K'). (S2) 

The matrices {T(O; R)} clearly provide an ordinary 
representation of the point group Ok' From Eq. (S2) 
it follows that 

X(O; R) = 2 L R~~ = 2(2 cos c/> ± 1), (S3) 

where c/> is the angle through which the rotation 
described by the matrix R is carried out, while the + 
sign applies if R describes a proper rotation and the 
- sign applies if the rotation is improper. By the 
use of Eq. (S3) we obtain the following character 
table: 

I ss. 3a" 

-2 -6 o 2 -2 2 

However, in the present case the diagonal terms of 
Djj'(O; z) for which j refers to an acoustic branch, 
and the off-diagonal terms for which either j or j' 
refers to an acoustic branch vanish. We therefore find 
that the only nonzero elements of Djj'(O; z) are the 
three diagonal elements D;;(O; z) where j refers to one 
of the three optical branches. Moreover, because r l • 

is a three-dimensional irreducible representation, 

'6 Reference 6, p. 13. 
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these three nonzero diagonal elements are all equal. 
Thus we have reached the conclusion that for an ionic 
crystal of the rocksalt structure, the phonon propagator 
Dii,(O; z) is diagonal in} and}" that the only nonzero 
diagonal elements are the three associated with the 
optical branches, and that they are all equal. 

However, this conclusion is not correct because we 
have ignored the macroscopic electric field which 
accompanies the long-wavelength longitudinal optical 
vibrations. It is now well known17 that this field splits 
the triple degeneracy of the optical modes at k = 0 
by raising the frequency of the longitudinal mode above 
the frequency of the (now) doubly degenerate trans­
verse optical modes. The degeneracy of the acoustic 
modes at k = 0 is not lifted by the macroscopic 
electric field, and D jj'(O; z) still vanishes if} and)" or 

17 Reference 3, Sec. 7. 
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both, refers to an acoustic branch. Therefore, D ii'(O; z) 
remains diagonal in} and j', and the only nonzero 
diagonal elements are still those associated with the 
optical branches. However, now the two diagonal 
elements associated with the doubly degenerate 
transverse optical modes are equal, and are different 
from the diagonal element which is associated with the 
longitudinal optical mode. This is the result obtained 
in Ref. 1. 

It is the particularly simple form of the phonon­
propagator matrix at k = 0 in ionic crystals of the 
rocksalt structure which enables the theory of the 
fundamental lattice vibration absorption in such 
crystals to be developed free of the algebraic com­
plications which would otherwise arise from the 
necessity of having to solve a matrix Dyson equation 
for the propagator.1 
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INTRODUCTION 

Several recent papers in elementary particle physics 
have considered in one way or another the possibility 
of embedding the Poincare group in a larger non­
compact group.1 By working within one representa­
tion of the larger group, one may be able to correlate 
several different representations of the Poincare group 
in a useful way. Though the immediate physical 
motivation in each case may be different, it would be 
useful to know in general how to decompose unitary 
representations of such a large group into parts 
irreducible under the Poincare group. This is part of 
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the general problem of reducing the unitary repre­
sentations of a given noncompact group into unitary 
irreducible representations (UIR's) of a noncompact 
subgroup, and of trying to understand the representa­
tion of the whole group expressed in the basis suited 
to this reduction. 

In previous papers, we have considered the reduc­
tion of unitary representations of 0(2, I) and 0(3, 1) 
with respect to the subgroups 0(1,1) and 0(2, I), 
respectively.2 We have also examined some of the 
properties of the generators of the whole group when 
they act on irreducible representations of the relevant 
subgroup. In the present note, we examine the UIR's 
of the Poincare group corresponding to vanishing 
mass and finite he1icity, and carry out the reduction 
of these UIR's into UIR's of the homogeneous 
Lorentz group 0(3, I). In particular, we examine 
the nature of the generators in the basis made up of 
UIR's of 0(3,1). 
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It should be pointed out that reductions of UIR's 
of the Poincare group with respect to 0(3, 1) have 
been carried out in the past.3 However, it appears that 
the nature of the generators of the Poincare group in 
this basis has not been considered previously. 

In Sec. 1, we recall the form of the principal series 
of UIR's of the homogeneous Lorentz group 0(3, 1). 
These are the only UIR's with which we are concerned 
here. Section 2 contains the relevant material on the 
UIR's of the Poincare group corresponding to zero 
mass and finite helicity (lightlike representations). In 
Sec. 3, we carry out the reduction of these UIR's of 
the Poincare group into UIR's of 0(3,1). Lastly, in 
Sec. 4, we consider the action of the generators of 
the Poincare group in the 0(3, 1) basis. 

1. PRINCIPAL SERIES OF UlR'S OF 0(3,1) 

As is well known, the homogeneous Lorentz group 
0(3, 1) has for it's covering group the group SL(2, C) 
of all complex unimodular matrices in two dimen­
sions.4 The Lie algebra of 0(3, 1) [equivalently, of 
SL(2, C)] is spanned by the six elements J j , K j 

(j = 1, 2, 3) obeying the commutation relations 

[Jj , Jk] = iEjk/J/, 

[Jj , Kk] = iEjk/K/, 

[Kj , Kk] = -iEjk/Jp 

(1.1) 

J j are the generators of spatial rotations while the 
K j generate pure Lorentz transformations. There are 
two Casimir invariants for 0(3, 1), 

In a UIR of 0(3,1), Jm and Ki are self-adjoint 
operators. There are two kinds of UIR's of 0(3, 1), 
namely the principal series, and the supplementary 
series.5 Here, we only need the former; UIR's of the 
principal series may be labeled in the form {jo, p}; jo 
is a nonnegative integer or half-odd integer, while p 
is any real number. Different pairs {jo, p} denote 
inequivalent UIR's. C1 and C2 may be expressed as 

The explicit structure of the UIR {jo, p} may be 
exhibited by introducing a basis in Hilbert space made 
up of orthonormal eigenvectors of J2 and J3. In any 

3 I. S. Shapiro, Sov. Phys -Doklady 1, 91 (1956); Chou Kuang­
Chao and L. G. Zastavenko, Zh. Eksperim. i Teor. Fiz. 35, 1417 
(1958) [Soviet Phys.-JETP 8, 990 (1959)]. 

• I. M. Gel'fand, R. A. Minlos, and Z. Ya. Shapiro, Representa­
tions of the Rotation and Lorentz Groups and Their Applications (The 
Macmillan Company, New York, 1963). 

• See, for instance, Ref. 4, p. 200. 

UIR of 0(3, 1), each finite-dimensional UIR of the 
compact subgroup 0(3) generated by Ji can appear 
no more than once. The members of this orthonormal 
basis are /j, m) and obey 

(j'm' Jjm) = bj'jbm'm' 

J2/jm) =j(j+ 1)/jm), J3 /jm) = m/jm). 
(1.4) 

In the UIR {jo, p}, j takes on the values 

j = jo,jo + l,jo+ 2,····,00 (1.5) 

while, of course, for eachj, m = -j, -j + 1,'" ,j. 
Introducing the spherical components J m' Km , m = 
+ I, 0, -1, of the generators, their matrix elements 
are given by 

</ m'l J 111 Ijm) = bj'j(j(j + 1»iC;"lf';", 

(/m'l KlIfljm) = (/11 K IW C~lf~" 

U + 111 K II» 
= -;[«(j + 1)2 - j~)«(j + 1)2 + l)/(j + 1)(2j + 3)]i, 

UII K IW = pjo[j(j + l)]-i, 

(j - 111 K IW = - i[(/- j~)(j~ + p2)fj(2j - 1)]i. 

(1.6) 

2. ZERO-MASS REPRESENTATIONS OF THE 
POINCARE GROUP 

The ten generators of the Poincare group Ji , K j , 

Pi' H obey the commutation rules (1.1) and the 
following: 

[J j , Pk] = iEjk/P/, [Ji , H] = 0, 

[Kj, Pk] = ibjkH, [Ki , H] = iPj , (2.1) 

[P j , Pk ] = [P j , H] = 0. 

Unitary irreducible representations of the Poincare 
group 

(2.2) 

corresponding to zero mass, finite helicity, and posi­
tive energy may be labeled by the helicity s of the 
representation. Here, s is an integer or half-odd 
integer, either positive or negative or zero. Such UIR's 
are most easily constructed in a Hilbert space Je of 
momentum wavefunctions in which the generators 
H and Pi are diagonal. 6 Vectors fin Je correspond 
to complex-valued functionsf(p) of a three-dimensional 
vector p, with the inner product (j, g) and norm 

6 J. S. Lomont and H. E. Moses, J. Math. Phys. 3, 405 (1962). 
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II! II being given by 

f
da 

(I, g) = wP J*(p)g(p), w = Ipl, 

Ilfll = (I,f)! < 00. (2.3) 

Let us denote the Cartesian components of p by P; , 
j = 1,2,3. Then the generators are represented as 
follows: 

J I = -I P2 - - Pa - + , . (a a ) SPI 
OPa oP2 (w + P3) 

KI = -iw ~ _ SP2 , 
oPI (w + P3) 

(2.4) 

K2 = - iw ~ + SPl , 
oP2 (w + Pa) 

Ka = -iWojoP3' 

P;=p;, H=w. 

The effect of a finite Poincare transformation on a 
wavefunctionf(p) has been given by Moses. 7 

3. REDUCTION WITH RESPECT TO 0(3,1) 

We wish to reduce the representations of the 
Poincare group given in Sec. 2 into irreducible 
representations of 0(3, 1).8 [For definiteness, we 
will consider the case with nonnegative integral s.] 
To this end, we change from the Cartesian variable 
P; to spherical-polar coordinates w, 0, cp: 

PI = w sin ° cos cp, P2 = w sin ° sin cp, 
(3.1) 

P3 = w cos 0, 

and simultaneously define a new wavefunction 
f(w, 0, cp) to represent the vector f which was pre­
viously represented by the wavefunction f(p): 

f --+ J(w, 0, cp) = eis<Pf(p). (3.2) 

Then the scalar product becomes 

(I, g) = LX) w dw I"dCP l"Sin ° dO ]*(w, 0, cp)g(w, 0, cp) 

(3.3) 

and the effect of the generators on the functions 

7 H. E. Moses, Ann. Phys. (New York) 41,158 (1967). 
8 It should be pointed out that we are considering VIR's of the 

proper inhomogeneous Lorentz group only, without including the 
operations of space and/or time reflection. 

few, 0, cp) is given by 

J .' o. 0 0 + cos cp 
1 = 1 sm cp - + I cos cp cot - s -- , 

00 ocp sin 0 

J 
. o. . () 0 sin cp 

2 = -I cos cp - + 1 sm cp cot - + s -- , 
00 ocp sin 0 

J 
. a 

3= -1-, 
ocp 

K .. 0 o. 0 a 
1 = - 1 sm cos cpw - - 1 cos cos cp -

ow 00 

. sin cp 0 . 0 + 1 -- - + s sm cp cot , 
sin 0 ocp 

K .. 0 . 0 . O' 0 
2 = - 1 sm sm cpw - - 1 cos sm cp -

ow 00 

. cos cp 0 
- 1 -- - - S cos cp cot 0 

sin 0 ocp , 

K . 0 0"0 0 
3 = -I cos W - + 1 sm -, 

ow 00 

PI = w sin ° cos cp, P2 = w sin 0 sin cp, 

P3 = W cos 0, H = w. 

(3.4) 

The structure of the generators J;, K; above is almost 
exactly that which was obtained for them in (B); there, 
we were dealing with UIR's of 0(3, I) of the principal 
series realized in a Hilbert space of functions on the 
unit sphere. To cast J; and K; into exactly the same 
form as in (B), we essentially have to perform a 
Fourier transformation with respect to the variable 
In w. We carry this out as follows. Let x be related to 
w by 

(3.5) 

so that 0 :::;; w < 00 corresponds to - 00 < x < 00. 

We first replace the wavefunctionJ(w, 0, cp) by a new 
one,fl(x, 0, cp): 

flex, 0, cp) = w1(w, 0, cp), (3.6) 

and then express flex, 0, cp) as a Fourier transform 
of a functionf2(p, 0, cp): 

fleX, 0, cp) = (27T)-! L: eipxflp, 0, cp) dp. (3.7) 

Thus all the functions f(p), f(w, 0, cp), flex, 0, cp), 
f2(p, 0, cp) related to one another by Egs. (3.2), 
(3.6), and (3.7) represent the same vector fin Je. The 
scalar product has the form 

(I, g) =L: dx l2JT dcp fSin 0 dO f~(x, e, CP)gl(X, 0, cp) 

=foo dp (2JTdtp ("sin 0 dOf:(p, 0, CP)g2(P, 0, cp). 
-oc Jo Jo 

(3.8) 



                                                                                                                                    

ZERO-MASS REPRESENTATIONS OF POINCARE GROUP IN 0(3, 1) BASIS 535 

Now we can express the effect of the generators J;, K; 
on wavefunctions f2(P, e, p) by the differential 
operators 

J .' o. e 0 S cos P 
1 = / sm p - + I cos P cot - + -- , oe op sin e 

J 
. o. . e 0 S sin q; 

2 = -/ cos P - + / sm p cot - + --oe op sin e ' 

Ja=-i~, op 
Kl = (p + i) sin e cos q; - i cos e cos p ~ oe 

. sin po. e + 1-- - + s sm p cot , 
sin e op 

K2 = (p + i) sin e sin p - i cos e sin p ~ oe 
. cos p 0 

- I -- - - s cos q; cot e 
sin e op , 

Ka = (p + i) cos e + i sin e ~ . oe 

(3.9) 

These coincide exactly with the generators of 0(3, 1) 
as given in (B) (except for a trivial change of sign of 
the K;). Evaluating C1 , and C2 , from (3'.9) we get 

C1 = 1 + p2 - S2, C2 = ps. (3.10) 

Thus by representing the vectors f of Je by the wave­
functions f2(P, e, p), we have achieved the reduction 
of the VIR of the Poincare group into VIR's of the 
subgroup 0(3, 1). The variable p in the function 
j~(p, e, p) is the same parameter that appeared in 
Sec. I in labeling the principal series of VIR's of 
0(3, 1). The result of these considerations is the 
following. 

Theorem: The unitary irreducible representation 
of the Poincare group corresponding to zero mass, 
positive energy, and finite nonnegative integral 
helicity s reduces into a direct integral of VIR's of the 
subgroup 0(3, 1), belonging to the principal series 
of VIR's of 0(3,1); each VIR of the type {s, p}, for 
every p in the range - 00 < p < 00, appears exactly 
once. 

It is obvious that if s is not necessarily integral and 
nonnegative, we merely replace s by lsi in the statement 
of the above theorem. 

The Casimir invariant of the 0(3) group J2 is 

J2 = - - + cot e -[
02 0 
oe2 oe 
+ -- -- - 2is cos e - - S2 (3.11) 1 {0

2 

O}] 
sin2 e Op2 oq;' 

Orthonormal eigenfunctions of J2 and Ja are well 
known.9 They are the D functions of angular-momen­
tum theory 

J2 Dr;"S( p, e, 0) = j(j + 1) Dr;"S( p, e, 0), 

JaDr;"sCp, e, 0) = rnD'j"S(p, e, 0). (3.12) 

With the help of these functions, we can construct 
a basis in the Hilbert space Je of the VIR of the 
Poincare group, corresponding to the states Ij, m) 
appearing in Eq. (1.4). Namely, we define a set of 
"ideal" vectors in Je, 

(3.13) 

whose wavefunctions written in terms of the variables 
x, e, pare 

o/p;m - (21T)-~eiP"'[C2j + 1)/41T]! Dr;"sCp, e, 0). (3.14) 

Vsing the expression (3.8) for the scalar product, we 
establish 

(o/p';'m',o/p;m) = b(p' - p)b;,;bm'm' (3.15) 

From the completeness properties of the D;, functions 
over the unit sphere, and the Fourier expansion 
theorem for square-integrable functions, we see that 
every normalizable vector fin Je may be "expanded" 
in the o/p;m: 

00 ; 100 
!= ;~sm~i _oodP!;m(p)'Yp;m' (3.16) 

The scalar product has the form 

(I, g) = ;~s mtJ~: dP!/"r,(p)g;mCp). (3.17) 

The vectors 0/ pim are "ideal vectors" and are not 
normalizable. Apart from phase factors, these states 
0/ pjm for fixed p are precisely the states Ijrn) introduced 
in (1.4) as a basis within the VIR {s, p} of 0(3, 1). 
Acting on a wavefunction hm(P) corresponding to a 
vector f in their domain, the ten operators j. K 

J' J 

leave p unaltered and (except for some trivial phase 
factors) connect different values of j, m with one 
another according to the matrix elements (1.6). We 
have 

(JMf)jm(P) = [j(j + 1)]~CmL~f }f ~!j,m-MCp), 
(K"lff)jm(P) 

= -C';~.~I if ~[(/ - s2)fj(2j + I)]! 
x (p - ij)!;-l,m-.lf(P) 

+ CmL1I if ~[ps/(j(j + 1»~Jf;,m-.ltCp) 
+ C,;~,~ if ~[«(j + 1)2 - S2)/(j + 1)(2j + l)]~ 
x (p - i(j + 1»!i+l,m-lltCP). (3.18) 

---
• A. R. Edmonds, Angular Momentum in Quantum Mechanics 

(Princeton University Press, Princeton, N.J., 1957), Chap. 4. 
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Finally, we also have 

(CJ);m(P) = (1 + p2 - s2)!;m(P), 

(CJ);m{P) = psf;m{P)· (3.19) 

4. THE ENERGY-MOMENTUM OPERATORS 

At the end of the last section, we have seen how 
the generators i;, K; of the homogeneous Lorentz 
group act on a vector f given by the wavefunction 
/;m{P). Now we see how the energy-momentum 
operators Hand P; act on these wavefunctions. 

Let us begin by writing the generators P; and H 
in terms of x, e, cp; their effect on a wavefunction 
fleX, e, cp) is given by 

PI = eX sin ° cos cp, P2 = ~ sin 0 sin cp, 

P 3 = eX cos e, H = eX. 
(4.1) 

Since we already know the effect of K;, and since 
one can obtain Pi in terms of the commutator of K; 
and H, it suffices to consider here the operator H 
alone. 

Let f be a vector in the domain of H. Its wavefunc­
tionfl(x, e, cp) then obeys 

Ilfl12 = L:dX ru 

dcp L'sin e de INx, e, cpW < 00, 

IlHfl12 = L:dX l2U dcp L'sin e de e2x Ifl{X, e, cpW < 00. 

(4.2) 

Clearly, (4.2) imposes severe restrictions on the 
behavior of fleX, 0, cp) as x -+ 00, and suggests that 
the Fourier transform of/lex, 0, cp), namelyf2(p, 0, cp), 
can be analytically continued into the upper-half 
complex P plane. This is exactly the situation discussed 
in detail in (A), where we were concerned with VIR's 
of 0(2, 1). Using exactly the arguments given there, 
we arrive at the following concIusionslo : If a vector 
f is in the domain of H, then for eachj, m, the function 

is the boundary value (in the sense of the limit in the 
mean) of an analytic function tp;mW of ~ = P + i1), 

as 1) -+ 0+. tp;m(O is analytic in the strip ° < 1) < 1 
(at least); for each fixed 1) in this range, we have 

CJJ ; Joo 
tsm~; _oodp Itp;m(P + i1)W < 00. (4.3) 

As 1) -+ L, tp;mW approaches (in the limit in the 

10 The relevant theorems on Fourier and Laplace transforms may 
be found in D. V. Widder. The Laplace Transform (Princeton 
University Press, Princeton, N.J., 1941), Chap. VI, Sec. 8. 

mean sense) a square-integrable function of p, which 
we can write as 

f;m(P + i). (4.4) 
We have 

(4.5) 
and 

;~ m~; L: dp Ifim(P + i)12 < 00. (4.6) 

The correspondence between vectors f in Je and the 
wavefunctions fim(P) is, in any case, only up to sets 
of measure zero; that is to say, given a vector f, each 
member of the sequence of functions of p, fim(P) is 
determined only up to sets of measure zero. None­
theless, if f is in the domain of H, the functionsfim(p) 
(known only up to sets of measure zero), suffice to 
determine unique analytic continuations into the 
upper-half complex P plane; calling these analytic 
functions tp;ma) as above, the boundary valuesf;m(p) 
and f;m(P + i) are limits in the mean of tp;mW as 
1m ~ -+ 0+ and L, respectively. Thus from the 
functions fim(P), we can determine (up to sets of 
vanishing measure) the functions f;m(P + i), and 
fim(P + i) is the wavefunction of the normalizable 
vector Hf 

As is to be expected, it is meaningless to talk of the 
effect of the operators P;, H on the ideal, nonnormal­
izable states 'Y p;m' They may only act on linear 
combinations f of the 'Y pim' if the "coefficients of the 
linear combination" f;m(P) possess all the properties 
mentioned above and permit the requisite analytic 
continuation in p. In this way, the energy-momentum 
operators "connect" different UIR's of 0(3, 1) to 
one anotherY 

We finally compute the effect of the operators P; on 
a vector f in their domain. Using spherical components 
Pm' the relation 

[KJI' H) = iPJ1 , (4.7) 

and Eqs. (3.18) and (4.5), we find 

(P,Uf)im(P) 

= C ":~:1I .t ~[(l- s2)fj(2j + l)hi-l,m-Jip + i) 
.. 1 

- Cm!..l1 .il :"{S/(j(j + l)r)fi.m-.lI(P + i) 
- C ":~~l .il ~[((j + 1)2 - S2)/(j + 1)(2j + 1))! 

X fi+l.m-Jl(P + i). (4.8) 
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The basic assumptions of the theory are strong unitarity, Bogoliubov causality, completeness of the 
in (out) fields on a unique vacuum, and Poincare invariance. The algebra of II functions, which are 
integral operators in the form of tempered distributions, is the main technical tool developed here. 
These II functions can be regarded as generalized step functions where the combination law is such that 
prod~cts ~ith <5 functions and their derivatives. are well defined. An application of this algebra of II 
functIons III th~ context .of ~he above assumptIOns leads to the current-formalism representations of 
nth-order functlOna.1 derIvatIves. of the current and Sop' These are alternatively called the Rp and P 
product repr~sen~atlons, respectIvely, t~e counterparts to. the R and <I> product representations of the 
nth-order derIvatIve of the field and Sop III the field formahsm. In a subsequent paper these relations are 
used to derive the integro-differential equations of Pugh [R. E. Pugh, Ann. Phys. (N .Y.) 23, 335 (1961») 
in a form amenable to a diagrammatic analysis. The perturbation series is then shown to be unique and 
finite with no cutoffs and a number of parameters that is independent of (increases with) the order of 
expansion for renormalizable (nonrenormalizable) interactions. 

1. INTRODUCTION 

Asymptotic quantum field theory (AQFT) is 
characterized by the requirement that the interacting 
fields become free fields for large times. In combination 
with other reasonable assumptions, this has led to the 
reduction formulas of LSZl and a representation of 
the SOP on the mass shell (m.s.) in terms of <I> products 
of interacting fields. Its primary success was to provide 
a basis for the study of analyticity. As the reduction 
formulas provided a representation of only the m.s. 
Sop, it was not yet suited for dynamical calculations. 
However, by assuming that the <I> product be the off 
m.s. extension of the SOP and that microcausality 
holds, an infinite set of integro-differential equations 
for the point functions was derived. l The perturbation­
theoretic solution of these equations was demon­
strated to exist at least formally (up to convergence 
of the expansion), but the question of uniqueness and 
of attendant boundary conditions was not answered. 

Subsequent to LSZ, several proposals have been 
made for a finite formulation of field theory along 
similar lines.2 The work of Pugh3 was based on a strong 
unitarity condition and a "dynamical as~umption." 
This "dynamical assumption" was later shown to be 
equivalent to strong Bogoliubov causality.4 Strong 

'Based. in I'art on the Ph.D. thesis Syracuse University, 1966, 
dUrIng whIch tIme the author was a NASA Trainee. 

t Work supported in part by a NSF research grant. 
t Present address: Department of Physics, University of Pitts­

burgh, Pittsburgh, Pennsylvania 15213 . 
. 1 H. Lehmann, R. Symanzik, and W. Zimmermann, Nuovo 

Omento 6, 1122 (1957). 
• M. Muraskin and K. Nishijima, Phys. Rev. 122, 331 (1961); 

B. V. Medvedev,Zh. Eksp. Teor. Fiz.48, 1479 (1965)[ Sov.Phys.JETP 
21,989 (1965)]; V. Ya. Fainberg, Zh. Eksp. Teor. Fiz. 47,2285 
(l964)[Sov.-Phys. JETP 20,1529 (1965)]; Ref. 3; and others. 

3 R. E. Pugh, Ann. Phys. (N.Y.) 23,335 (1963). 
'T. W. Chen, F. Rohrlich, and M. Wilner,J. Math. Phys. 7, 

1365 (1966). 

unitarity and Bogoliubov causality are two physically 
motivated constraints that can be applied directly to 
the SOP without the auxiliary construct of a field. Thus 
the interpolating field need never enter the formalism. 
If the field is introduced, the assumptions serve to 
specify the off m.s. extension of the SOP as the <I> 
product of fields and the off m.s. extension of the 
field itself as an R product of fields. This result has 
been reproduced in the context of a weak free-field 
equationS as introduced by Chen. 6 It will be demon­
strated in the present work that without the field one 
is led to representations of the off m.s. SOP and current 
by P and Rp products, respectively, of currents. The 
P and Rp products are formed analogously to T and 
R products, only with the (j function replaced by the 
n function. The latter can be regarded as a generaliza­
tion of the (j function. 

The n function and its further generalization, the 
TIl"') function, are the primary technical tools of this 
development. They form an algebra over a subspace of 
the space of tempered distributions and have the 
advantage over (j functions in that they can form 
products with a wider class of distributions, in par­
ticular, Dirac b functions and their derivatives. They 
are identified in the theory as multipliers on current 
products and, in fact, n multiplication on field 
products in general does not exist. The complete 
utilization of these functions leads to the elimination 
of the interacting field and enables the generalization 
of operator expressions for current and SOP derivatives 
as functionals of currents. These are the current 
analogs of the (j and R product representations of the 
SOP and interpolating fields, respectively. 

537 

The validity for physics of the operator expressions 

5 J. G. Wray, Ph.D. thesis, Syracuse University, 1966. 
• T. W. Chen, Ann. Phys. (N.Y.) 42, 476 (1967). 
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derived here is demonstrated a posteriori in a subse­
quent paper7 where a perturbation expansion repro­
duces the results of renormalized Feynman-Dyson 
(FD) theory to all orders computed with a p3(Lint) 

interaction. Further, the formalism leads naturally to 
physically motivated boundary conditions for the 
integro-differential equations, resulting in unique 
matrix elements. It also leads to a program of diagram­
matics. In the present work we will be content to 
demonstrate that, at least formally, unrenormalized 
FD is a solution of the equations. 

The main assumptions and notation are covered in 
Sec. 2. In Sec. 3, ordering theorems with respect to 
the n(WSl) functions are derived. In Sec. 4 the 
analogs of the representation of the field by retarded 
products and of the SOP by II> products are derived for 
currents. Then, in the same context it is demonstrated 
that the Feynman-Dyson algorithm is a formal 
solution of these equations. The extension of these 
arguments with possible application to nonrenormaliz­
able theories is facilitated in the manner of Chen's 
operator theory. A summary of the results is given in 
Sec. 5. 

2. ASSUMPTIONS 

The assumptions of AQFT have evolved somewhat 
over the years, but by and large contain statements of 
Lorentz invariance, unitarity, causality, and the 
asymptotic condition. The latter condition is not 
necessary here, since the interpolating field is absent 
from the formalism. In addition there is the necessary 
apparatus for constructing the space of physical 
states, in this case a Hilbert space. A recent review 
articleS includes a statement of the assumptions and 
discusses their motivation. Here we will be content to 
state them briefly as a vehicle to introduce some of the 
notation of the theory. 

Assumption (i): The theory is required to be Lorentz 
invariant. In this regard the metric of Minkowski 
space will have signature + 2. 

Assumption (ii): There exists a representation of the 
free fields that is complete in the sense that all operators 
in the theory can be expressed in terms of them. 
Since only Hermitian scalar fields are to be considered, 
this means that all admissible operators F will have 
the representation 

F = ,,- dx'" dx f (x '" x )'a ... a . 00 1 J 
k 1 11 1t 1 11' 1 n" • 

n=O n! 
(2.1) 

'J. G. Wray, J. Math. Phys. 9, 552 (1968), following article. 
sF. Rohrlich, Perspective in Modern Physics, R. E. Marshak, Ed. 

(Interscience Publishers, Inc., New York, 1966). 

In this expression 

d"(Xi ) == a(xi ) == ax, == ai (2.2) 

is a free Hermitian scalar field satisfying the free-field 
commutation relations; the coefficient functions, 
fn(x l ••• x n), are c-number distributions, symmetric 
under permutation of the -4 vectors (Xl' .. x n), and 
the integration is over all space-time. In other words, 
F is an operator-valued distribution on the Hilbert 
space, .le, spanned by all polynomials in the creation 
operator a: acting on the unique vacuum 10). Here 

a: == j J da#a(x)a;fix ), 

and f~(x) is a normalizable, positive-frequency solution 
of the Klein-Gordon equation and will frequently be 
referred to as a mass shell (m.s.) test function. For 
this work it will be sufficient to restrict the coefficient 
function fn(x l .•• xn) to 6', the space of tempered 
distributions. 

The functional derivative with respect to a free field 
will be employed extensively throughout this work. 
The mth derivative of F, for example, is defined by 

(2.3) 

and is seen to free the fm+n from the m.s. constraint 
of the free fields in m variables. Realizations of this 
derivative are thoroughly discussed in the literature. 9 

As pointed out by Pugh,1° it is necessary to dis­
criminate between strong (::'k) and weak (~) operator 
equations with respect to the functional derivative. 
A strong equation is valid even after an arbitrary 
number of derivatives have been taken, whereas a 
weak equation is not. Chenu helped alleviate a con­
fusing situation by observing that the free-field 
equation is most naturally interpreted as a weak 
equation. 

(2.4) 
with 

15 bax - Kxax == K", - = K",b(x - y). 
bay bay 

(2.5) 

This convention will also be adopted here. 

Assumption (iii): The Sop can be defined as a 
unitary transformation between .Jeill and .Jeout , spanned 

9 F. Rohrlich, J. Math. Phys. 5, 324 (1964); F. Rohrlich and M. 
Wilner, J. Math. Phys. 7, 482 (1966). 

10 R. E. Pugh, J. Math. Phys. 6, 740 (1965). 
11 Reference 6, p. 479. 
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by {ain (ouO), 
(x) J' The connection with the notation of Pugh is simply 

out ~ S* in S S* ~ S-l 
a(x) - a(",) , - • (2.6) PR(x,y) = II",y, PA(x,y) = IIlIx' 

Unitarity has been assumed as a strong equality, 
though for renormalizable interactions it follows as a 
consequence of weak unitarity and the remaining 
axioms.12 

The stability of the vacuum and single-particle 
state under S is also required. 

Assumption (iv): It will be required that the currents 
satisfy strong Bogoliubov causality, 

and 

OJ", ~ 0, for x ""' y and XO < /, (2.7) 
bay 

J = S* ibS '" - , ba", 
(2.8) 

where x"'"' y means that (x - y) is spacelike. Bo­
goliubov causality, a restriction on the singularities 
appearing at the origin of the light cone, and the 
other assumptions imply the "dynamical" equation13 

The coefficients appearing in (2.9) are the tempered 

Equation (2.9) can be seen to arise from the axioms 
of the theory with the additional restriction that 
(iMt/ba2) have only b- and Kb-function singularities 
at the origin of the light cone. If this is true, then one 
can form the product (II"'II + IIy",)(ibJ",/bay), since 
IIXyD(x - y) and II",yKxD(x - y) are well defined and 
in fact vanish. From strong unitarity we obtain 

(2.15) 

which upon forming the product with IIXY becomes 

(2.16) 

where 

(2.17) 

Equation (2.17) follows since with the restriction to 
b- and Kb-function singularities at the origin of the 
light cone and with strong Bogoliubov causality the 
common support of its two factors vanishes. Further, 

since IIyx(iMx/bay):b 0 in the same manner, Eq. 
(2.16) can be written 

distributions, or 

II",y == II",ixy; ~'YJ) == KxKy8",/1A(X - ~)tlR(Y - 'YJ), 

(2.10) 
for 

(2.11) 

and 
(2.12) 

The product with II",y(xy; ~'YJ) is defined as a convolu­
tion in the right set of variables, (~'YJ), such that, for 
example 

IIxlI[J"" Jy] == J d~ d'YJII",y{xy; ~'YJ)[Js' J,,]. (2.13) 

These are the same operator coefficients first discovered 
by Pugh14

; they satisfy 

(2.14) 

12 T. W. Chen, Nuovo Cimento 45, A533 (1966). 
13 This equation was first proposed by Pugh' ° and later shown to 

follow from the assumptions."" This later work is patterned after 
similar work' which was for a representation of the dynamical 
equation possessing only formal significance. 

14 R. E. Pugh, J. Math. Phys. 7, 376 (1966). 

(I - Bxy)(iM"jbay ) :b IIXl/[J"" JII ]. 

To conclude this section, we mention the following 
technical points. Only Heisenberg operators will be 
used and bound states have been excluded from the 
scattering states by construction. The compatibility 
of the assumptions has not been proved. However, 
the term-by-term existence of perturbation expansions 
(convergence of the series is not known) for nontrivial 
systems is suggestive that they are compatible. 

3. OPERATOR ORDERING 

In this section the P and P[S] ordering of currents 
will be introduced. In addition, ordering theorems and 
domains of validity will be discussed. The presentation 
is parallel to that for T ordering. 15 

General Remarks 

The ordered product of n operators has the follow­
ing general properties. For the operator 0 defined by 

O(Al'" An) == (AI'" An)orcterect, (3.1) 
we have: 

(I) 0 is idempotent, 0 2 = O. 
(2) 0 is symmetric (for Bose fields) under permu­

tation of the operators to be ordered. 

15 F. Rohrlich and J. G. Wray, J. Math. Phys. 7, 1697 (1966). 
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(3) If the n operators are independent of each other, 
the ordering process will be linear. But usually this is 
not the case and in general ordering is a nonlinear 
operation such that D(A + B) ~ D(A) + D(B) unless 
A and B are independent. 

In general, the n objects to be ordered will be 
operator-valued distributions. For the work reported 
here, the class of tempered distributions 6' will be 
large enough so that the ordered products and their 
respective ordering theorems are in general rigorous 
and differentiable only as functionals to be folded 
with test functions from 6, the test function space of 
tempered distributions. 

The T product of fields, labeled by their space-time 
points, is defined by 

T+(A 1 ' •. A,,) == I (h"'nAl"' A ,,, (3.2) 
perm 

(1 ... n) 

and 

L(A I '" An) == I °1"'nAn"'AI' (3.3) 
perm 

(1 ... n) 

where 

° 1 ", n == 012023 ' .. 0n-2,n-l()n-l,n' (3.4) 

0ij == O(xi - Xj), (3.5) 
and 

Ai == A(xi) == Ax,· (3.6) 

The T+(L) orderings thus define ordering with 
decreasing (increasing) times from left to right. 

The idem potency of the T ± ordering is guaranteed 
by the multiplicative relations satisfied by ()ij as a 
distribution, 

()ij()l"·i··.j"." = 61 '''i".j''·n, (3.7) 
and 

OJ,Ol''';'''j''''' = 0, for 1 S; j <j S; n. (3.8) 

In addition, there is the important completeness 
relation, 

(3.9) 

These expressions are reviewed because it will be 
necessary to prove analogous relations for the distri­
bution IIi; before it can properly qualify as the 
elemental coefficient around which the P-ordering 
concept is to be built. In this regard it is also important 
to note that the product of ()i;'S as defined by (3.4) is 
manifestly Abelian and associative. This, for example, 
will not be a trivial observation for the product of the 
fl ii'S. 

The P product is constructed analogously to the 
T product with ()ij ->- flu. It arises in the formalism as 
the ordering operation to be associated with currents 
and will therefore be defined on products of currents. 

We have for P ± products, respectively, 

and 

where 

P+(J1 '" I n) == I fl1· .. nJl ··· I n , (3.10) 
perm 

(1 ..• n) 

P-(JI'" I n ) == I fll"'nJn'" J l , (3.11) 
perm 

(l ... n) 

(3.12) 

flij == fl;;(x;xj; YiYj) 

== Kx,Kx/)x.")~A(Xi - Yi)~R(Xj - Yj), (3.13) 
and 

Ji == J x ; == J(x;). (3.14) 

Let us now define the space ;F', or indicating the four­

vector variables explicitly, :J ~ ... '" == .'F~"" X
m

' 

;F { ... m == {CPl ... Tn 7T 1 ... Tn; all CPt ... '" E 6 1 .•• m , 

all 7Tl .. 'm E 7t'1". m}. (3.15) 

In (3.15) 6 1 ... m is the space of test functions 
of tempered distributions in the m-four vectors 
(Xl' .. xm) and 7t'~ ... m is the linear space of functionals 
formed from all possible products of the flij (i, j = 
1, ... ,m) and unity. That ;F' c 6' follows from 
7t" c 6', the statement that all elements of 7t" are 
tempered distributions. .'F' is important since it 
exhausts the space of all left multipliers of the TI ij 
products of this theory with the exception of mass 
shell (m.s.) test functions. But since the flo vanish on 
the m.s., multiplicative relations to be established on 
;F' become trivial on m.s. test functions. 

The fl ij are tempered distributions that form an 
Abelian, associative algebra on .'F'. The product law 
for a chain of fl ij (3.12) is a convolution for each 
repeated index. From (3.13) we see that each TIif has 
a left and right set of variables running over the 
indices i, j. 

(XiX;) = left set, 

(YiYi) = right set. 

The convolution is formed from the right set of one 
TI i ;, proceeding to the right to the left set of the TIkI 
containing the first repetition of that index. Thus, for 
example, the product for the repeated index 1 in a 
particular chain is 

{'Ollvolutioll {'oBvolutJon 

I I I I 
TI23 fl 21 (X 2X I; Y2ul)fl45fl61 (X6U1 ; Y6vI)fI 78TI19(~'IX9; YIY9), 

(3.16) 

where only those variables necessary to demonstrate 
the convolution product have been explicitly stated. 
This product is always defined, since the variables of 
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the left set have bounded support.16 Associativity of 
the product is simply the statement that the result is 
independent of the order of performing the con­
volutions; i.e., for the example (3.16), the result is 
independent of the order of integration in u1 , VI' This 
is demonstrated explicitly in Appendix A. The com­
mutativity of the product 

[TIi' ' TIki] = ° on :F', 
(i*j,k*/l 

for i,j, k, 1 = 1,' .. m < 00 (3.17) 

is proved in Appendix B. 
The idem potency of the P ordering is guaranteed 

by the following multiplicative relations satisfied by 
the TIij on :F' (Appendix A) 

Also, we have 

since 

and 

TI2lS = TI 2lTI13 = TI2STI2lTIlS 

= TI2STI2l (1 - BlS - TI Sl) 

= TI2STI2l - TI2sTI21BlS - TI23TI 2l TI Sl 

= TI 23(TI 21 - TI Sl), (3.24) 

In general, this analysis leads to 

TIijTIl ... i ... j"'n = TI l ... i ... j ... n , (3.18) such that (3.23) becomes 
and 

TIiiTIl"'i"'i"'n = 0, for 1 S i <j S n. (3.19) 

These are the analogs of the () products, (3.7) and 
(3.8). The analog of completeness is significantly 
different, 

(3.20) 

and can be taken as the defining relation for Bii . The 
physical significance of these operators may become 
clear as the theory develops. 

P-Ordering Theorems 

In this section the basic ordering theorem for P 
products will be derived. As previously discussed, all 
P-ordered products and their associated theorems are 
rigorous relations only as linear functionals on the 
left space of multipliers :F' (3.15). All relations proved 
in this section will use (3.18)-(3.20) and the following 
properties of the TI ii , all of which are proved in 
Appendixes A and B, 

[TIii' TIkzJ = 0, (i ~j, k ~ 1), 

BiiTIl"'i ... zTIk"'j"'n = O. 
(3.21) 

The basic P-ordering theorem relates the P-ordered 
product of n - 1 operators to that of n. From the 
definition of the P ordered product, we have 

P +(Jl ... J n) = .2 TIl':' nJl ... J n' (3.22) 

which can be written 

perm 
(1··· n) 

P +(Jl ... J n) = .2 TI2 ... n{TI12(JlJ2 ... J n) 
perm 

(2··· n) 

+ TI 213(J2J lJ S' .. I n ) + ... + TII,l,Z+! 

X (J2'" JZJlJI+l '" I n) + '" + TI nl(J2'" JnJl)}. 

(3.23) 
,. V. Gorge, Syracuse University Research Report SU-66-03 

(1966). 

P+(Jl"'Jn) 

= .2 TI2 ... n{(l - B12 - TI 2l)(JlJ 2 ... J n) 
perm 

(2··' n) 

+ TI 23(TI 2l - TISl)(J2JlJ3 ... J n) + .. . 
+ TIz,Hl(TI n - TI Hl,1)(J2 ... JIJlJI+! ... J n) 

+ ... + TI nl(J2 ' •• JnJl)} 

= .2 TI2"'n{(I-B12-IT2l)(JlJ2"'Jn) 
perm 

(2··· n) 

+ (TI21 - TISl)(J2JlJS' .. J n) + .. . 
+ (TIn - TI I+!,1)(J2 ... JZJlJZ+l ... J n) + ... 
+ TI nl(J2'" JnJl)}. (3.26) 

By rearranging terms, (3.26) can be written 

P+(Jl '" I n) = .2 TI 2 ... n{(1 - B12)(JlJ2'" I n) 

or 

perm 
(2'" n) 

+ TI 2l([J2 , JdJ3 · .. I n) 

+ ... + TI n(J2 ... [J l , JdJZ+l ••• J n) 

+ TI Hl,1(J2 ' •• JI[JZ+l, Jd' .. I n) 

+ ... + TI nl(J2 ' .. In-l[Jn, Jd)} 

P+(Jl '" I n) = (1 - B12)JlP+(J2'" I n) 

+ [P+(J2"'Jn),Jl]Rp' (3.27) 
for17 

n 

[P+(J2 '" I n), Jl]Rp ==.2 P~(J2'" [Jl' Jl]Rp'" I n), 
Z~2 

(3.28) 
with 

(3.29) 

Equation (3.27) is the basic ordering theorem which, 

17 The (') appearing on the right-hand side of (3.28) means the 
P + ordering with respect to all currents but J,. 
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with its variations, can be summarized 

P ±(J1 ... J n) = (1 - B12)J1P ±(J2 ... J n) 

± [P±(J2"'Jn),J1]Rp, (3.30) 
Ap 

and 

P±(J1'" I n) = (1 - B12)P±(J2'" I n )J1 

± [11' P±(J2'" Jr,)]Rp' (3.31) 
Ap 

where 

[P±(J2 '" I n), J1]Rp = [J1, P±(J2'" In)]Ap' (3.32) 
Ap Rp 

In correspondence with the T-product ordering 
theorems, both the Jacobi-type identities and the 
factorization formulas for P products can be proved. 
However, only the equivalence of the Rp product 
and Rl' commutator are of importance to this work. 
In Appendix C it is proved that 

Rp = R'p, 

where Rp is the Rp product 

jnRp(Jo; J1 ... I n
) 

(3.33) 

== .2 TI 01 '" rJ .. [Jo, Jd, J2], ... I n ], (3.34) 
perm 

(1'" n) 

and Rj" the Rp commutator, 

jnR'p(Jo; J1 ... I n ) 

== [ ... [10' JdRp' J 2]Rp,'" In]Rp' (3.35) 

P[Sl-Ordering Theorems 

Chen6 has extended this formulation of field theory 
to a class of interactions larger than the renormal­
izable interactions through the introduction, via the 
current Eq. (2.9), of a generalization of TIij' TIl;] 
( TI .. = Wll). The new current equation isIS 

13 11 

(1 - B[S]) jOJ x ~ TI[A'][J J] (3.36) 
xy X1l x' 11' (jay 

for 

TI [N] = (K K )Ne ~(S-l)(x _ ~)~(X-I)(y _ 'Yl) 
Xli - x 11 xy A R " , 

(3.37) 
andI9 

~~l~'k)(x - ~) 

== f dUI ..• dU.\'~A(R)(X - UI)~A(RJ 
X (u1 - u2)· .. ~A(m(Ux-1 - U.V)~A(]l)(UX - ~) 

(3.38) 

18 The notation here is related to that of Chen's by the corre­
spondence, 

p~n)(x,y) = n~:], p~n)(x,y) = n~"~]. 
19 V. Gorge and F. Rohrlich, Syracuse University Research 

Report SU-66-10 (1966). 

B[N] is defined by xv 

1 - B[N] = TI[Nl + TI[N]. 
xy -- xy yx (3.39) 

The motivation for this move is based on the fact that 
TI[S] exists in product with K;(j(x - y), r < 2N. Thus 
th~Y current commutator and derivative of (3.36) can 
have singularities at the origin of the light cone of the 
order K;(j(x - y), r < 2N. 

The same multiplicative relations hold as for TIxv 

(TI [N])2 = TI[N] 
X'U Xli ' 

(3.40) 
TI[N]TI[N] = 0 

xy yx • 

In fact the TI[S] form an Abelian, associative algebra 
xy 

on :F[s], in the same manner that the TIXY form an 
Abelian, associative algebra on :F' defined by (3.15). 
:F['Y]', or, with the dependent variables (Xl'" Xm) 
explicitly indicated, :F~':'.r m' is defined by 

for Nfinite. Here 6 1 ... In is again the test-function space 
for tempered distributions in the m four-vectors 
(x ... x ) and 7t[.Y]' is the linear space spanned by 1 ." In , 1··· m 

all polynomials of the TII;Y] (i,j = 1,'" ,111). That 
:F['Y]' c 6' for N finite follows from the fact that all 
7T~':'.] m E 7t~.:-.r m are tempered distributions. 

The product law, and proofs of existence, associ­
ativity, and commutativity proceed in the same manner 
as for TIXY only with the superscript [N] added to all 
spaces and objects entering the proofs. Thus, chains 
of TI[S] can be used to define P[S] ordering with 
corre:ponding ordering theorems valid on :F[s]'. We 
have, therefore, 

for 

P[N](J ... J ) = '" TI[S] J ... J (3.42) + 1 n -- £. l"'n 1 rt' 
perm 

(1 ... n) 

P!:Y](JI"'Jn)== .2 TIF~']'nJn"'J1' (3.43) 
perm 

(1 ... n) 

TI [S] - TI[S]TI[S] ... TI[S] (3.44) 
1 ... n = 12 23 n-I, n . 

The ordering theorems of importance here are 

P~\](J1 ... I n ) = (l - Bf~'])J1P~V](J2'" I n) 

± [P~V](J2 ... J n), JI]Rl'N, (3.45) 
ApN 

and 

P~V](J1 ... J n) = (1 - B~r])p~\1(J2 ... J n)J1 

± [JI , p~A'](J2 ... J n)]RpN, (3.46) 
Ar"l 
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for 

[P~NJ(J 2 ••• J n), J 11Rp N 
ApN 

n 

- '" p[NJ'(J ... [J J] ,,'" J ) = "'" ± 2 I' 1 Rp"' n , 
1~2 ApN 

and 

(3.47) 

(3.48) 

(3.49) 

[J1 , p~Vl(J2 ... J n)]RpN = [p~Vl(J2' .. J n), J11ApN. 
ApN RpN 

(3.50) 

The equality of the Rip,"l commutator and product can 
also be proved on j<[s]' by substituting II -->- fI(Nl in 
the notation for the proof of Rp = Rp in Appendix 
C. Thus we have on j<['Y]', 

for 

inRrtJ'(Jo; J 1 ••. I n) 

and 
== [ ... [10' J1]RpS, J2]RpN,'" In]RpN, 

inRfj;"l(JO; J 1 ••• I n) 

== I mJ"·.l .. n[' .. [Jo, J11, J2], ... Jnl· 
perm 

(l, .. n) 

(3.51) 

(3.52) 

(3.53) 

The rewards and shortcomings of this innovation 
by Chen will be explored in the next sections where 
generalized current equations are derived and in a 
subsequent paper7 where an S-matrix formalism is 
developed. The corresponding field formalism is also 
being developed. 20 The current formalism, however, is 
enough to establish an integral equation for S-matrix 
elements, providing a framework for discussing the 
important question of boundary conditions in per­
turbation expansion. 

4. THE CURRENT FORMALISM 

In this section the representations for the off m.s. 
current and Sop will be given in terms of Rp and P 
products of currents, respectively. These are the 
analogs of the R- and <1>-product representations, 
respectively, in the field formalism. The physical 
content of these equations gains heuristic support in 
that they are formally satisfied by the Feynman­
Dyson S operator as will be proved. The question of 
the finiteness of the theory and a rigorous perturbation 
expansion are developed in a subsequent paper. 7 A 
generalization in the manner of Chen6 of the off m.s, 
current and of the Sop equations is also carried out. 

20 F. Rohrlich (to be published). 

Generalized Current Equation 

The axioms of the theory imply as a strong equality 
that the first derivative of the current is given by Eq, 
(2.9), 

(1 - B12)(i{jJl/oa2) ~ II I2 [J1 , J2]. (4.1) 

Now since the weak free-field formalism enables the 
commutation of operator and coordinate differ­
entiation, (4.1) can be extended to the generalized 
current equation, valid on j<', 

[ IT (1 - Bij)] onJo :b R'p(Jo; J1 ... I n)· 
j>i~O oa1 ' •• oan 

(4.2) 

This restriction is demanded by the use of an Abelian 
product for the IIij which has been proved only 
on j<'. 

The proof of (4.2) proceeds by induction. For 
n = 1 we regain Eq, (4.1). Now assume it for n and it 
will be proved for n + 1. We have, by assumption, 

IT (1 - Bk ,n+l) - IT (1 - Bij) [ 
n ] 0 [n ] onJo 

k~O oan+I _j>i~O oa1 ' •• oan 

~ [IT (1 - Bk,n+l)] _0- Rp(Jo; J1 '" I n ). (4.3) 
k~O oa n+1 

But because the (l - Bk n+l), (k = 0, 1, ... ,n) com­
mute on j<' and are ide~potent, Eq. (4.3) becomes 

Now with (4.1), Eq. (4.4) can be written 

n 

X I R'p(Jo; J 1 ••. [Jl , J n+tlRp' .. J n) 
I~O 

~ [g(1- Bk,n+I)]c-i)[R'p(Jo;J1 "'Jn), I n+1]Rp 

~ [n (1 - Bk,n+l)]R'p(Jo; J 1 ... In+I)' (4.5) 

where the last step follows by definition of the Rp 
commutator. That the coefficie.nt function 

[g (1 - Bk.n+l) ] --->- 1 

in (4.5) follows by (3.21), since all products of Bk,n+I 
(k = 0, 1, ... , n) contained in this coefficient act on 
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R~,(Jo; J1 ••• I n+1) which has a nii in every variable 
for every term. This concludes the proof of (4.2), since 
Eq. (4.5) becomes 

IT (1 - Bii) 0 ~ R'p(Jo; J1 ••• I n+1)' [ 
n+l ] bn+1J 

i>i~O ba1 ' •. ba n+1 
(4.6) 

Further, since the Rp commutator and product are 
equal on jo' (Appendix C), this also proves 

IT (1 - Bij ) = Rp(Jo; J1 ••• I n)· 
[ 

n ] bnJo s 

i>i~O ba1 ' •• ban 
(4.7) 

The Generalized SOP Equation 

The operator equation for the second derivative of 
the Sop follows from the current equation (4.1) and 
unitarity, 

(1- B )S* j
2

b
2

S :b (I - B )(iMI + J J) 
12 ~ ~ 12 ~ 2 1 

ua1ua2 ua2 
:b TI 12 [J1, J2] + (1 - B12)J2J1 

:bP+(J1J2). (4.8) 

That this result generalizes on jo' to 

for 

[)IP - Bii)}l ... n:b P+(J1" . I n), (4.9) 

jnbns 
J 1 ... n =S* , (4.10) 

bal' .. ban 
follows by induction. 

For n = 2 we regain Eq. (4.8). Now assume it for 
11 and prove it for 11 + l. Thus we have by assumption 

[IT (1 - Bk.n+1)] ~ [. IT (1 - Bii)]jl'" n 
k~l ba ,,+1 ,> )~1 

(4.11) 

,;, [fty - Bi )] (-I n+1J1''' n + J 1 ... n+1) (4.12) 

and 

X I P+ J1 '" (1 - B 1,n+1) --' .. J" , (4.13) n [ ibJI ] 

1~1 ba n+1 

but only on jo' since we have commuted (l - BI •n+1) 
with the P ordering. By the current equation (4.1), we 
obtain for (4.13) 

:b [IT (1 - Bk •n+1)] i P +(J1 ' .. [J1 , J n+tlRp ... J n) 
k~l 1~1 

:b [tl (l - Bk ,n+l) Jp +(Jl' .. J n), J n+1]Rp' (4.14) 

As in the proof of the generalized current equation, 
the coefficient in (4.14) 

[n(1 - Bk ,n+1)] -+ 1 

by (3.21) since all products of the Bk ,n+1 (k = 1,"',11) 
act on [P+(J1 " • I n), I n+1 ]up which has nij in every 
variable for every term. With this fact plus Eqs. 
(4.l2) and (4.l4) we have 

[n (1 - Bk,n+l)]Cfty - Bii)] 

x (-In+1J1'''n + J1 ... n+1) 

:b [P+(J1'" I n), I n+1]Rp, (4.15) 
or 

Cgy -Bii)}l'" n+l 

:b [il (1 - Bk ,n+1)}n+1P+(J1'" I n) 

+ [P +(J1 ••• J n), J n+1]Rp, (4.16) 

where the assumption for 11 of the equation to be 
proved has been used in the last step. But by (3.21) 
and (2.12), 

[n (1 - Bk ,n+1)}n+1P+(J1'" I n) 

:b (1 - Bn+1,1)Jn+1P+(Jl'" I n ), (4.17) 

such that by the ordering theorem (3.30), Eq. (4.16) 
becomes 

concluding the proof. 
The formal solution represented by the Feynman­

Dyson (FD) S operator 

( 4.18) 

is a solution of (4.2) and (4.9). This follows since the 
proofs of these expressions were inductive and were 



                                                                                                                                    

CURRENT FORMALISM. 1. ORDERING THEOREMS FOR CURRENTS 545 

therefore consequences of the m = 1 case. But for 
m = 1 the proof has already been given by Pugh.21 

In connection with SFD, however, it is interesting 
to see that a mapping relation previously derived for 
fields22 has its analog for currents based on SFD' 
This relation is (Appendix D), 

T+(J1" 'Jm) = S;DU1" 'jmSFD)+, (4.19) 
for 

and 
(4.21) 

In addition the current has an R-product representa­
tion (Appendix D) 

J = '" - dl: .. · dl: R(J' . h ... h) 00 1 f '" z-:O l! \i1 \i I "" 1 Z , 
(4.22) 

for 

H = f d~h~. (4.23) 

These formal expressions may have value as heuristic 
aids to determine relations based on the P-ordering 
concept which have more than just formal significance 
when applied to currents. 

Current Formalism According to Chen 

The innovation of Chen discussed in Sec. 3, 

(1 - B~~l)(iM",/~av) ~ II~~l[J"" Jv] (4.24) 

and, equivalently, 

(1 B[Nl)J S [Nl( 
- XY ",v = P+ J",J'V) , (4.25) 

can be extended on ,'F[N]' in the same way as in the 
cases for N = 1, Eqs. (4.2) and (4.9). The proofs are 
identical with those for II",y and B",v except for their 
replacement by II~~l and B~·~·l, so that only the results 
will be presented here. The current Eq. (4.24), 
generalizes to 

[ IT (1 _ BWl)] ~n Jo 
i> j=O ~al ••• ~an 

S [N" -R ~(J'J"'J) - P 0, 1 n 

~ R[Nl(J . J ... J ) P 0, 1 n , 

(4.26) 

(4.27) 

the R)~'l commutator and product, respectively. For 
N = 1 these results reduce to (4.2) and (4.7). The SOP 

equation, (4.25), generalizes to 

[.IT (1 - BWl)]J1 ... n ~ p~Nl(Jl" . I n), (4.28) 
z>j=l 

21 Reference 10, p. 745. 
22 Reference 15, p. 1704. 

which reduces for N = 1 to Eq. (4.9). The notation 
and ordering theorems for these proofs was developed 
in Sec. 3. 

5. CONCLUSION 

The identification of the II- (IJ[NL) function algebra is 
the most important technical contribution of this 
work. This algebra is associative and Abelian on the 
space ,'F' (,'F[s]') c 6' and its elements arise in con­
volution products with currents. The II (IJ[Nl) functions 
permit multiplication with certain distributions such 
as Dirac ~ functions and their derivatives in contrast 
to () functions which do not have this property. 
Coupled with the fact that its product with fields does 
not in general exist, we find the II (II[Nl) functions 
appearing as the natural elements for constructing 
ordering theorems of currents. Thus its first major 
application leads to the current representations of the 
derivatives of the current and the Sop, respectively. 
Specifically, these are the results (4.2) and (4.9) with 
respect to the II function and (4.27) and (4.28) with 
respect to the II[·vl function. 

Additional applications of the II-functional algebra 
are developed in a subsequent paper. 7 Here the inte­
gral equation of Pugh l is derivable without ever 
introducing the construct of an interpolating field. 
The equations take on a particularly simple form, 
however, enabling the identification of diagrams and 
a successful solution to the boundary-condition 
problems in perturbation expansion, as will be shown. 
Thus in the current formalism an ordered product of 
currents analogous to time ordering has been gener­
ated. It has the advantage, however, of rigorous rather 
than just formal existence for the case of renormal­
izable interactions. Fornonrenormalizable interactions 
it is demonstrated7 that the perturbation expansion 
exists term by term and is unique, but at the expense 
of introducing additional parameters with increasing 
order of expansion. 
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APPENDIX A: CHAINS OF IIij 

The IIi; and products formed from them are tem­
pered distributions which constitute an Abelian 
associative algebra on ,'F' as defined in Eq. (3.15). I~ 
this appendix the product will be demonstrated to be 
associative and various multiplicative relations will 
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be proved. Commutativity of the product is proved in 
Appendix B. 

For the product 

convolution convolution 
I I I I 

= TI 2a(X2Xa; Y2ua)II45TIIa(XIUa; YIva)II7sIIa9(VaX9; YaY9) , 
(AI) 

associativity is independence of the order of integration 
over UI and VI' This can be seen by explicitly carrying 
out the convolution of anyone product. Take, for 
example, 

TI 2aTI1a = f II 2a(X2Xa; Y2Ua) duaII1a(XIUa; YIYa), (A2) 

or 

II 2aII Ia = K""K",30",'",3f AA(X2 - Y2) dUaAR(xa - ua) 

X K"'IKu30"'lU3AA(XI - YI)AR(ua - Ya). (A3) 

Integrating by parts twice leaves only the volume term, 
which is simply a convolution over a Dirac 0 function, 

II 2aII1a = K""K"'30"""'3AA(X2 - h) 

x f dUa[Ku3AR(Xa - ua)] 

x K"'IO"'IU.AA(XI - YI)AR(ua - Ya) 

= -K""K"'30"""'3AA(X 2 - Y2) f duao(xa - ua) 

x K"'IO"'l1t.AA(Xl - Yl)AR(ua - Ya) 

= -K""K"'3K "'IO"""'30"'1",.A.ixI - Yl) 

X AA(X2 - Y2)A R (xa - Ya). (A4) 

Now since all convolution products appearing in the 
chain are of this form, only the volume terms con­
tribute after integration by parts. But the volume 
terms are all convolutions over Dirac 0 functions and 
lead to unambiguous results independent of the order 
of integration. 

That the surface terms in (A4) vanish can be seen 
in the following way. Explicitly, we have 

X Kx,K"'30X,x.AA(X2 - xa) 

X f dauaAR(Xa - ua) 

L---'> 

X 0U3oK",/J"'luaAA(XI - Yl)AR(ua - Ya). 

This term vanishes because the factors 

(i) K"'lO"'lU3AA(XI - YI)AR(ua - Ya) 

= -K"'lOY1"'ltl3Y3A(xI - YI)A(ua - Ya) 

(ii) K"'lO"'IU3AA(XI - Yl)AR(ua - Ya) 

= -K"'lO(X~ - U~)OllL"'IOU'Y3A(XI - Yl)A(ua - Ya), 

(iii) K"'IO"'lU.AA(XI - Yl).&~(Ua - Ya) 

= -K"'IOY1"'IU3Y3A(Xl - YI)'&(Ua - Ya), 

have no contribution in the lim because of their 
U3°-J. ± 00 

respective ° functions. The differential operator K"'l 
will not affect this limit since in each of the differ­
entiated terms the argument u~ will still be bounded 
above and below by y~, y~, respectively, by surviving ° functions. 

The multiplicative and linear relations between TI12 , 
II 21 , and Bl2 have been summarized in Eqs. (2.12) 
and (2.14). Products or chains of two or more IIij 
(i, j = 1, ... , In; In ~ 2) have properties which are 
generalizations of those for m = 2. The particular 
chain 

IIa1 ··· am == IIala.IIa2aa··· II am _ 1a", (AS) 

for {eli} some set of integers, has already been intro­
duced in the text. Since, as it is proved in Appendix 
B, the IIij form an Abelian algebra on :F', 

[II ij , IIkZ ] = 0, (A6) 

the ordering of the IIij in (AS) is immaterial. In 
addition, (A6) enables the reduction of any chain to 
products of factors of the form (A6). For example, 

IIa2IIl2IIla = II12II13IIa2 = II12II la2, (A 7) 

where (A6) and (AS) have been used, respectively. 
Thus, to characterize properties of an arbitrary chain, 
it is sufficient to discuss only those of the form (AS). 

Useful properties of chains to be proved on :F' are 
the following. A particular ordering of the integers 
has been chosen for convenience and does not restrict 
the generality of the results. 

(i) II;' .. m == (III'" m)COIll\lleX = TIl'" m' 
conjugate 

(ii) m"'m = II I ... m , 

(iii) III'" m = (- )mKXl ... KXmO X1 '" x"A.of (Xl - YI) 

... AA(X m_ 1 - Ym-I)AR(x m - Ym), 

(iv) IIijIII"'i .. ·j ... m = II I ... i .. . j"'mIIij 

= TII···;.·.j"'m, 

(V) TIl"'i'''j'''mTII ... j'''i'''m = 0, 

(vi) BijTI I ... i'" j ... m = TIl'" i .. , j ... mBij = 0, 

(vii) BijIII"'i ... zIIk · .. j"·m = TI I ... i ... Z 

X TIk ... j'''mBii = 0, 
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and 
TIl" ·i·· .zBiiTIk ··· i'" m = O. 

The proofs are, in order: 

. * TI*TI* TI* (1) TIl" . m = 12 23'" m-l,m 

= TI12TI 23 ... TIm-I,m = TIl" . m (A8) 

by virtue of TI~ = TI ii . 

(ii) m ... m = (TI12 TI 23 ... TI m_l ,m)2 

= TI;2TI;3 ... TI~-l,m 

= TI12 TI 23 ... TIm-I,m = TIl'" m' (A9) 

where use has been made of (A6) and TI~; = TI i ;. 

(iii) To prove 

TIl'" m = (- )mKXl ... KXm()Xl'" Xm 

X ~A(XI - Yl) ... ~A(Xm-l - Ym-l)~R(Xm - Ym) 

(AIO) 

will involve some calculation. First we have, explicitly 
indicating the convolutions to be performed, 

TIl'" m = TI12TI23TI34 ... TIm-I,m 

= J TI 12(XlX2; YlU2) dU 2TI 2a(U2Xa; Y2U a) 

X duaTIaiuaX4; YaU4) dU4 ..• TIm-I,m 

(All) 

But as we have seen [Eq. (A4)] after twice integrating 
by parts, each of these integrals has only a volume­
term contribution, which is a convolution over a 
Dirac 15 function. Effectively, the ~1(X - u) of the 
left member of any convolution product combines 
with Kit of the right member to yield -b(x - u). 
Thus the result can be written down at once 

TIl'" m = f KX1Kx2()X1X2~.iXl - Yl)~R(X2 - U2) 

X dU2K1!2Kx3()U2X3~A(U2 - Y2) . ~R(Xa - Ua) 

X dua ' .. dUm-lKUm_1KXm()Um_l"'m 

X ~A(Um-l - Ym-l)~R(Xm - Ym) 

= (- )m-2f K X, K x2()X,X2 ~A(XI - Yl) 

X b(x2 - U2) . dU2Kx3()U2X3~A(U2 - Y2) 

X b(xa - £1 2) • dUa ... dU m_l 

X KXm()um_1Xm~A(Um-l - Ym-l)~R(Xm - Ym) 

= (_)m KXl ... KXm()Xl ... Xm 

we first note that 

TIijTIl ... i ... j ... m = TI i;(TI12TI23 · .. TIm-I,m) 

= [TIii' TI12](TI23 · .. TIm-I,m) 

+ TI12[TIii , TI2a](TI34 ••• TIm-I,m) 

+ ... + (TIl2 ... TI m- 2,m-l)[TIi;, TIm-I,m] 

+ TIl ... mTI i;, 

which by (A4) becomes 

(A13) 

proving the first part of (AI2). The remammg 
expression can be proved explicitly by calculation. 
From (AlO) we have 

= Kx,K"'j()XiXj f dUi dU;~A(Xi - Ui) 

X ~R(X; - U;)· (-)mKXl ... K", .. K .. ·K 
Uj Zm 

X ()Xl'" Ui'" Uj'" Xm ~A(XI - Yl) ... ~A 

X (U i - Yi)' .. ~A(U; - Y;) ... ~R(Xm - Ym)· 

Once again, integration by parts twice in both 4-
variables Ul , U2 has only volume contributions over 
the Dirac 15 functions b(ui - Xi), b(u; - X;), respec­
tively, such that 

TIi;TI l ... i .. · j ... m = (- )mKXl ... KXm()xl ... Xm 

X ~.iXl - Yl) ... ~.iXm-l - Ym-l)~R(Xm - Ym) 

= TI l ... m , 

concluding the proof. 
(v) We have 

TIl' .. i ... ; ... mTIl ... j • •• i ... m 

= TI l · .. i ... j ... mTIiiTI;iTIl'" j .. 'i ... m = 0, (AI4) 

where the first step follows from (AI2) and second 
from (2.14). 

(vi) This proof follows again from (AI2), since 

(A15) 

by (2.14). Th~ remaining term can be proved in the 
same way or just by the fact that 

[Bij , TIl ... m] = [(1 - TIij - TIji),TIl ... m ] = 0 

(AI6) 
A ( ) A ( ) by (AI3), such that (AI5) implies 

X UA Xl - Yl " 'UA Xm- l - Ym-l 

~R(Xm - Ym). Q.E.D. TIl"'i ... j"'mBij = O. (A17) 
(iv) To prove 

TIi;TIl"'i"';"'m = TIl"'i"';"'mTIij 

= TIl ... ; ... j"'m, (AI2) 

(vii) This result does not follow from the previous 
relations so that a calculation must be made. Again 
one of the three statements implies the others by 
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(Al6). To prove the first relation, we note that 

BijII I "' i 00 .zIIk . 00 j. 00 m 

= BijIIliIIjmIII"'i ... zIIk ... j"'m (AI8) 

by (A12). But 

BijIIliIIjm = KXi K X;8 xiX; J dUi dUj[~(Xi - ui) 

X ~R(Xj - u j) - ~R(Xi - Ui)~(Xj - u j)] 

x KX1KuiKu;Kxm8x"'i8u;xm~A(Xl - YI) 

X ~R(Ui - Yi)~A(Uj - yj)~R(Xm - Ym) = 0, 

(A19) 

since integrating twice by parts leaves only the volume 
terms which vanish by 

KUiKuJ~(Xi - Ui)~R(Xj - u j) 

- ~R(Xi - Ui)~(Xj - u j)] = 0. (A20) 

Thus (AI8) vanishes by (A19) and the relation is 
proved. The proof here and that for (A15) are equiv­
alent to saying that the Fourier transform of [III", m] 
vanishes whenever one of its variables is put on the 
mass shell. That is, since the right set of variables in 
the Fourier transform of B(X1X2; YlY2) contains one 
m.s. 0 function in each term 

F.T. [B(XlX2; YlY2)] = B(PlP2; qlq2) 

......, A(PlP2qlq2)O(q; + m2) + C(PlP2qlq2)b(q~ + m2) , 
(A21) 

the product (A18) can be viewed as taking the factor 
F.T. [III'" m] to the m.s. in one variable. 

APPENDIX B: COMMUTATIVITY OF THE IIij 

since there is no convolution between dissimilar indices 
and 

[II12' II3z] = II lzII3z - II3zII12 

= KX1Kx.8xlX2~ .. ixl - ~l) 

X J d'YJZ~R(XZ - 'YJ2)Kx3K~28x3~2 
X ~A(X3 - Y3)~R('YJ2 - ~2) 

- KX3Kx28x3X2~A(X3 - ~3) 

X J d'YJZ~R(X2 - 'YJ2)KxlK~28xl~2 
X ~A(XI - ~1)~R('YJ2 - ~2)' 

which upon twice integrating by parts becomes23 

[IIl2' II 32] = -KX1Kx2Kx38xlX.8x3X. 

x [~A(XI - ~1)~A(X3 - ~1)~R(X2 - ~2) 

- ~A(XI - ~1)~A(X3 - ~3)~R(X2 - ~2)] 

=Q ~6) 

The fifth combination [II12 II 23] does not vanish 
as a consequence of carrying out the indicated prod­
ucts, but it is still the zero distribution on .'F~ ... m as 
defined by (B2). Explicitly we have 

[II12' IId 

= II12II 23 - II23IIl2 

= -KX1Kx.Kx.fJX1X'X3~A(Xl - ~l) 

X [~A(X2 - ;2) - ~R(X2 - ;2)]~R(X3 - ~3) 

= KXIKx2Kx38xIX2X3~A(Xl - ;1) 

X ~(X2 - ;2)~R(X3 - ;3) ¥: 0. (B7) 

In this appendix it will be proved that. However, [II12' II 23] is nil potent. This follows by 

[IIi), IIkZ ] = ° on T(i;;e. j, k¥: I), (Bl) [II12' II23]2 = [II12' II23](II12II23 - II z3II1z), 

or more precisely that 

fl ... ",[IIi;, II kz ] = 0, i,j, k, I = 1,"', In 

(i ;;e.j, I ¥: k) for all floo.mE:F{oo.m (B2) 

and :F~ ... m defined by Eq. (3.15). 
If we let (i,j, k, /) run over (1,2,3,4) for sim-

plicity, we must contend with the three cases 

(i) (ij) = (kl): [II12' II l2], [II12' IT2l], 

(ii) i = k,j;;e. 1:[II12' II 23], [II12' II 32], 

(iii) (ij);;e. (Kl):[II12' II 34]. 

Four of these vanish directly as a result of carrying 
out their products: 

(B3) 

[II12' II2d = II12II2l - II2lII12 = ° - ° = 0, (B4) 

[II12' II34] = 0, (B5) 

where 

[II12' II 23]II12 = KXl KX2Kx38xIX2X3 J d'YJl d'YJ2 

X ~~iXl - 'YJl)~(X2 - 'YJ2)~Jb3 - ;3) 

X Kq,Kq28~lq2~j'YJl - ;1)~R('YJ2 - ;2) = 0, 

(B8) 

since twice integrating by parts in 'YJ2 leaves a vanishing 
volume term by virtue of 

K~2!l(X2 - 'YJ2) = 0. 

In the same manner, 

(B9) 

23 The prod uct formed between any two indexes attached to differ­
ent TIij is carried out explicitly in Appendix A. There it is demon­
strated that only volume term~ contribute after twice integrating 
by parts. 
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proving 
(BlO) 

To prove that [TI12' TI 23] vanishes on :F~ ... m' we 
first must introduce two subspaces of :F~ ... m' The 
distributions TI 12 TI 23 , TI 23TI 12 are idempotent. For 
TI 12TI 23 , we have 

(TII2TI23)2 == TI12TI23TI12TI23 

== [TI12 , TI23]TI12TI23 + TI23TI12TI12TI23 

== TI23TI12TI23 == [TI 23 , TI12]TI 23 + TI12TI23TI23 

== TI12TI23 , 

where use has been made of (BS), (B9), and the 
idempotency of TI i ;. The proof for (TI32TI12)2 == TI32TI12 
goes through in the same manner. 

The eigenvalue-zero eigenspaces of TI 12TI 23 and 
. TI23TI12 can be constructed as follows 

~~ ... m == {It. .. m(1 - TI 12TI23); all 11'" m E :F~ .. . m} 

(Bll) 
and 

Je~ ... m == {It. .. m(1 - TI32TI12); all 11'" m E:F~ ... m}, 

(Bl2) 
where 

gl" . mTI 12TI 32 == ° for all gl". m E ~~ ... m (B13) 

and 

hI .. ' mTI 23II12 == ° for all hI'" m E Je~ ... m' (Bl4) 

These are necessarily subspaces of :F~"'m since, 
for example, all vectors 

11" . m(1 - TI12TI 23) E :F~ .. . m (all 11 ... m E :F~ ... m) 

Now, with the aid of (B19), Eq. (B2) can be proved 
for the last combination [II12' TI 23]. The proof is by 
contradiction and starts with the assumption 

11" . m[TI12 , TI 23] ~ 0, for some 11'" m E :F~ ... m' 

(B20) 
Equation (B20) can also be expressed as 

11' .. m[II12 , TI 23] 

== 11 ... m(TI12TI 23 - TI23TI12) 

== 11'" m(TI 12II23 + [TI12' TI 23]TI12 - TI12TI23TI12) 

== 11 ... m(II12II 23 - TI12TI23II23TI12) 

== 11' .. mTI12II23(l - TI 23TI12) ~ 0, (B2l) 

using (BS) and the idem potency of TI i ;. This in turn 
implies that fl ... mTI12TI23 has a nonvanishing com­
ponent in Je~ ... m for some fl'" m E :F~ ... m' since 

(i) 11' .. mTI12TI23 == 1~ ... m E :F~ . .. m' 

by construction, 

(ii) 1~ ... m(1 - TI 23TI12) E Je~ ... m' 

by construction for f~ .. . m E :F~ ... m . 

But with (B19) this implies that f1". mTI 12II 23 has a 
nonvanishing component in ~~ ... m for some fl ... m E 

:F~ . .. m' This is a contradiction, since 

11'" mTI12TI23(1 - II12 TI 23) == 0, 

for all 11'" m E :F~ ... m (B22) 
and (B23) implies 

11' " mTI12TI23(l - II12 TI23) ~ 0, 

for some 11 ... m E :F~ ... m' (B23) 

by construction. Further, we have 

gl ... m II 23TI 12 

(BI5) Thus the assumption (B20) is wrong and in fact 

11' .. m[TI12 , TId == ° for all 11." m E :F~ . .. m 

== gl'" m(1 - TI12TI23)TI23TI12 [by (Bl3)] concluding the proof of (B2). 
(B24) 

== gl··· m(TI 23TI 12 - TI12TI23TI12) 

== gl··· m(TI 23TI 12 - [TI12' TI 23]II12 - II23TI12TI12) 
APPENDIX C: EQUALITY OF THE Rp 

PRODUCT AND THE R1, COMMUTATOR 
== ° for all gl' .. m E ~~ ... m' (Bl6) The Rp product is defined by 

where the last step follows from (BS) and TI12 idem­
potent. But this implies 

inRp(Jo; J 1 '" I n) 

== L TIO! ... n[' .. [Jo , Jd, J 2], •• " J n] (CI) 

In the same manner it can be shown that 

which, together with (B17) implies 

(B17) perm 
(1 ... n) 

and the Rp commutator by 

(BIS) inR'p(Jo; J
1 

.•• J n) 

== [ ... [Jo, J1]Rp, J2]Rp, .. " J n]Rp' (C2) 

(BI9) The proof of their equivalence follows from the 
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generating form for R p, valid on :F', 

iRp(Jo; Jl '" I n+1) = [Rp(Jo; Jl '" I n), I n+1]Rp, 

(C3) 
which implies 

Rp = R'p on :F'. (C4) 

Equation (C3) is proved analogously to the proof 
of R = R',15 

nRp(Jo; Jl ... J n), J n+l]Rp 

= L TIOI '" n[' .. [Jo, Jd, J2], ••• , J n], J n+tlRp 
perm 

(1'" n) 

n 

=.L TIol ... nL[···[Jo,Jd,···,Ji-tl, 
perm i=O 

(1 •.. n) 

x [J j' J n+1]Rp]' J i+tl, ... , J n], 

in[Rp(Jo; J l '" I n ), I n+1]Rp 

= .L TIOl '" n{(TIo,n+l - TIl,n+l) 
perm 

(1 .•• n) 

x [ ... [Jo, I n+1]' J l ],' .• , I n ] 

+ ... + (TI1,n+l - TIl+1,n+1) 

X [ ... [Jo, J l ],"', J1J, I n+l], J1+1J,'" ,J",] 

+ ... + TI n,n+1[' .. [Jo, Jd, J 2], ••• ,J nJ, J n+1]}' 

APPENDIX D: CURRENT-MAPPING THEOREM 
IN FEYNMAN-DYSON THEORY 

In this appendix it will be proved that the Feynman­
Dyson (FD) current satisfies the relations 

(D1) 

== .L - d;'" d;R(j h ... h ) <:IJ 1 f 
1=0 I! ' z '" 51 ~l ' 

(D2) 

and 

T+(JI .•. J m) = S*(jl ... jmS)+, (D3) 

with S = SFD, Eq. (4.l8). The relevant ordering 
theorems for T-ordered products to be used are24 

T±(j"" ... j"'mhy, ... hYn) 

= jx, T±(j", • ... j",,,,hy , ••• hUn) 

± [T±U".· .. j"'mhYl ... hy.),j""JR ' (D4) 
A 

T±(j"" ... j"'mhy, ... hyJ 

= T±(j", • ... jXmhy, ... hyn)jXl 

± Ux" T±Ux • ... j"'mhYI ... hyJ]R' (D5) 
A 

a 

= (j2 ... jmS)±il ± Ul' (j2 ... jmS)±]n (D7) 

(C5) for 
a 

But, from the properties of the TIL .. ' n (Appendix A), 
we have 

TIOI ... i TI l,n+1 - TI1+l,n+1) 

since 

= TIOl '" n TI l,I+1(TI1,n+1 - TI1+l,n+l) 

= TIOl .•. nTI Z,l+ITI l,n+l(l - TIl+l,n+1) 

Thus (C5) becomes, using (C6), 

WRp(Jo; J l ... I n), I n+1JRp 

(C7) 

= I TIol ... n{TIo,n+I,I[' .. [Jo, J n+d, J11, ... ,J n1 
perm 

(1'" n) 

+ ... + TI z,n+1,Z+l 

X [ ... [Jo, J1],"', Jz], I n+1]' Jl+1]"", I n] 

+ ... + TI n,n+1['" [Jo, J11, J2J,"', JnJ, I n+1J} 

= .L TIOI"'n+1["'[JO,JIJ,J2],"',Jn+l] 
perm 

(1··· n+1) 

= in+1Rp(Jo; Jl '" I n+l)· Q.E.D. (C8) 

[(j2 ... j mS )±, jlJT = Ul' (j2 ... j mS)±Ja' (D9) 
a r 

n 

= L T+(hl ... hi-I' hi+1 ... hn)[jx, hi]R 
i=l 

n 

+ I T+(h1 •·• hi-I' hi+l ... hj _ 1 , hi+1 ... hn) 
i> j=l 

X tUx, hj)R, hiJR 

+ '" + [ ... Ux, hdR, h2JR"", hnJR' (010) 

The R-product representation for Jx , (D 1), will be 
proved first. We have for S = SFD, 

SJ", == ioS = (j",S)+ oax 

<:IJ (-itf 
== n~o -:1 (d;)T+(j",h1 ••• hn)· (D11) 

2. Reference 15, p. 1704. 
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But by (D5) and (DlO), 

T+{j",h1' .. hn) = T+(h1' .. hn)j", + U"" T+(h1' .. hn)]R' 

T+(j",h1' .. hn) 
n 

= T+(h1' .. hn)j", + Z T+(hl ... hi-I' hi+1 ... hn) 
i=l 

n 

xU"" hi]R + Z T+(h1'" hi-I' hi+! ... hj-I' 
i>j=1 

hJ+l' .. hn)[U"" hi]R, hj]R 

+ ... + [ ... U"" h1]R, h2]R,'" , hn]R' (012) 

The symmetry under the integral of (Dll) in the 
variables (~1 ... ~n) allows (D12) to become 

T+V",h1' .. hn) 
Symmetry n n' 
in(1"'n) T(h "'h)j +Z . T(h "'h) 
----'---~) + 1 n '" 1=11! (n _ I)! + 1+1 n 

X [ ... [j"" h1]R, h2]R,"', h1]R 

n n! it . 
--~) Z T+(hl+1 ... hn)R(]",; hI ... hi)' 

1=01! (n - 1)! 
(013) 

where the last step follows by definition of the R 
product. Thus for Eq. (D11) we have 

SJ", = Ii (-itiln! 
n=OI=on! l! (n _ 1)! 

X f<d~)T+(hl+1'" hn)R(j",; hI ... hz). (014) 

Assuming uniform convergence so that the summa­
tions in (DI4) can be interchanged, we obtain 

00 1 00 (_i)n-l 
SJ", = Z - L-'---~ 

1=0 I! n=l (n - I)! 

x f(M)T+(h 1+1'" hn)R(j",; hI ... hi), 

SJ", = S L - (d~)R(j",; hI ... hi)' 00 1 f 
1=0 I! 

or 

Q.E.D. 

With this result we can readily prove by induction 
the mapping relation, (D3). It is true for n = 1 by 
construction. If it is assumed for n it can be proved 
for n + 1. We have, by (D4) with the arguments 
replaced by (Jl ... I n+1), 

T+(J1 ... J n+l) 

= J1T+(J2' .. I n+l ) + [T+(J2' .. I n+1), J1]R' 

(DI5) 

Now, using the implicit T-product ordering theo­
rems, (D6) and (D7), we have for j Hermitian 

JIT+(J2" . I n+1) 

= S*(jlS)+S*(j2' .. jn+lS )+ 

= (jlS*LSS*{j2 ... jn+lS)+ 

= {S*jl - [S*,jl]r}(j2'" jn+lS )+ 

= S*(jl" 'jn+1S)+ - S*[(j2" 'jn+lS)+,jl]r 

- [S*,jdr(j2' .. jn+lS)+ 

= S*(jl' .. jn+1S)+ - [S*(j2' .. jn+lS)+,jl]r 

= S*(jl .. , jn+lS)+ - [T+(J2 ' •• In+l),jtl.. (016) 

where the last step follows by assumption. Thus (D15) 
becomes 

T+(J1 ... J n+1) 

= S*{jl'" jn+1S)+ - [T+(J2'" In+l),jdr 

+ [T+(J2"'Jn+l),J1]R' (017) 

Now if we take the (;11'" n+l projection of (DI7), we 
obtain 

(;11 ... n+l T+(J 1 ••• J n+l) 

= (;11'" n+l{S*(jl'" jn+lS)+ - [T+(J2'" I n+1),jl1r 

+ [T+(J2' .. J n+1)' JdR}' (018) 
But 

(;11'" n+lT+(J1'" I n+1) = (;11'" n+1S*(jl'" jn+1S)+, 

(019) 
since 

n+l 
= (;Il"'n+lZ(;Iil T+(J2'" [Ji , Jd'" I n+I) = 0, 

i=2 

(020) 
by (3.8), and 

n+l 
= (;Il"'n+IZ T+(J2'" [Ji,jdr' ''In) = 0, (021) 

i=2 

= (;11 ... n+l(;1il ~ -11, f(d~)[R(j"'i; hI ... hz},j"'l]R 
1-0 . 

=Q ~m 
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In proving (D22) we have used the fact that 
R(j.,; hI'" hi) = 0 for t., < t1 ,"', II which implies 

[R(j.,;hl··· hl),jY]R =0, for t.,<ty. (D23) 

Proving (D19) also proves the contention, since 
both T+(J1 '" In+l) and S*(h' .. jn+lS)+ are sym­
metric in (1 ... n + 1). That is, for an arbitrary pro-

jection 0"'1" ''''n+1' we have 

0"'1 ... "'n+l T+(Jl ... J n+l) = 0"'1'" "'n+1 S*(jl ... jn+lS)+ 

JOURNAL OF MATHEMATICAL PHYSICS 

and therefore that 

T+(J1' .. In+l) = S*(j1 .. , jn+lS)+, Q.E.D. (D24) 

From (D17) we also see that 

[T+(J2 ' •• In+l)' JdR = [T+(J2 ' •• I n+1),j1]r' (D25) 

In addition, taking the Hermitian adjoint of (D24) 
yields 

(D26) 
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This work has accomplished in the context of asymptotic quantum field theory the following objectives. 
(1) The S-matrix equations of Pugh [R. E. Pugh, Ann. Phys. (N.Y) 23, 335 (1961)] and their general­
ization in the manner of Chen [T. W. Chen, Ann. Phys. (N.Y.) 42, 476 (1967)] are derived without 
the aid of an interacting field. (2) A diagrammatic representation of these integrodifferential equations is 
demonstrated. (3) The problem of boundary conditions for a self-interacting system is solved in perturba­
tion theory. This leads to a finite, divergence free, no cutoff expansion in the physical coupling constant. 
For renormalizable interactions, the only additional parameter is the physical mass, whereas for non­
renormalizable interactions, uniqueness of the expansion requires additional parameters with increasing 
order of expansion. (4) The success of the perturbation expansion serves as a posteriori justification of the 
formulation in CF.I., [1. G. Wray, 1. Math. Phys. 9, 537 (1968)] upon which the present work is built. 
The II or "generalized step" function and its associated algebra plays the principal technical role in facili­
tating this work. The crucial II-ordering relations and theorems developed in CF.!. are reviewed here. 

1. INTRODUCTION 

In the present work the general formalism of CF.I. 
is used to generate the integro-differential equations 
of Pugh,1 facilitate a choice of boundary conditions 
for finite, unique solutions in perturbation expansion, 
and discuss the extension due to Chen2 for non­
renormalizable interactions. A model based on a 
single self-interacting Hermitian scalar field is worked 
out in detail for the rp3 interaction with reference to a 
Lagrangian. The generalization to charge, spin, and 
many-field problems is to be carried out in a later 
work. The work is motivated by the belief that a 
finite formulation of quantum field theory exists 
which contains only physical parameters and no 
divergences. The approach of Pugh1 succeeded in 

• Based in part on the Ph.D. thesis "The Current Formalism in 
Asymptotic Quantum Field Theory," Syracuse University, Decem­
ber, 1966, during which time the author was a NASA Trainee. 

t This work was supported in part by the National Science 
Foundation. 

t Present address: Department of Physics, University of Pitts­
burgh, Pennsylvania 15213. 

1 R. E. Pugh, Ann Phys. (N.Y.) 23, 335 (1963). 
2 T. W. Chen, Ann. Phys. (N.Y.) 42, 476 (1967). 

yielding finite results to any order of perturbation 
expansion for renormalizable interactions. However, 
the work was not completely self-consistent, a 
problem rectified in the present work. Chen2 has 
extended the ideas of Pugh to an operator formalism 
which can support a perturbation expansion up to any 
given order for nonrenormalizable interactions. How­
ever, by extrapolating to an S-matrix formalism, it is 
demonstrated here that the number of parameters 
increases with the order of expansion. 

The assumptions and notation of the theory were 
introduced in CF.J.3 We review the essential points of 
this work in the present section. The assumptions are 
the familiar ones, with the notable absence of an 
asymptotic condition: 

(i) Lorentz invariance. 
(ii) Strong unitarity. 

(iii) Strong Bogoliubov causality. 
This is because the interpolating field never appears 
explicitly, since all expressions are written as func­
tionals of currents and higher derivatives of the Sop' 

3 J. G. Wray, J. Math. Phys. 9.537 (1968), preceding article. 
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t Present address: Department of Physics, University of Pitts­
burgh, Pennsylvania 15213. 

1 R. E. Pugh, Ann Phys. (N.Y.) 23, 335 (1963). 
2 T. W. Chen, Ann. Phys. (N.Y.) 42, 476 (1967). 

yielding finite results to any order of perturbation 
expansion for renormalizable interactions. However, 
the work was not completely self-consistent, a 
problem rectified in the present work. Chen2 has 
extended the ideas of Pugh to an operator formalism 
which can support a perturbation expansion up to any 
given order for nonrenormalizable interactions. How­
ever, by extrapolating to an S-matrix formalism, it is 
demonstrated here that the number of parameters 
increases with the order of expansion. 

The assumptions and notation of the theory were 
introduced in CF.J.3 We review the essential points of 
this work in the present section. The assumptions are 
the familiar ones, with the notable absence of an 
asymptotic condition: 

(i) Lorentz invariance. 
(ii) Strong unitarity. 

(iii) Strong Bogoliubov causality. 
This is because the interpolating field never appears 
explicitly, since all expressions are written as func­
tionals of currents and higher derivatives of the Sop' 

3 J. G. Wray, J. Math. Phys. 9.537 (1968), preceding article. 
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Some technical points involving the mathematical 
apparatus of the theory are the following. 

All operators of the theory will be defined on the 
Hilbert space H spanned by all polynomials of the 
smeared free (in) field, 

(1.1) 

acting on a unique vacuum. The unitarily equivalent 
space spanned by the out-fields define the Sop, 

(1.2) 

The functional derivative is carried out with respect 
to the in-fields and is a means of expressing an 
operator with some variables extrapolated off the 
mass shell (m.s.). That is, for F an operator on H 
with the representation 

F = "" - dl:··· dl: f (I: ... I: )'a ... a . 00 1 f 
£. I "1 "n n "1 "n' h ~n·' 
n~O n. 

(1.3) 
the functional derivative is 

- = L - d;l··· d;n!n+l(X;1 ... ;n) :ah ... a~n:' bF 00 1 f 
ba", n~O n! 

(1.4) 
In fact, carrying on in this manner we see that 

for < .. ')0' the vacuum expectation value. However, 
it is necessary to discriminate between equations that 
remain valid after functional differentiation and 
those that do not. These are called strong and weak 
equations, respectively, with the notation 

~ ->- strong equality, 

~ ->- weak equality. 

For example, the free fields will be taken to satisfy a 
weak free-field equation 

Ka", ~ 0, (1.6) 
for 

(1.7) 

This will enable the commutation of functional and 
coordinate differentiation. For a more detailed 
analysis of these points, the reader is referred to CF.1. 
and the references noted there. 

An additional technical aspect concerns the distri­
bution 

TI",y == TI",ixy; ;'Y)) == K",KyO",v'}.·A(X - ;)~R(Y - 'Y)), 

(1.8) 

for 

{
I, xO > l 

()",y == ()(x - y) = 
0, X

O < l. 
(1.9) 

The product formed between TI",y at the same and dif­
ferent space-time points is associative and Abelian on 
the space :F' c 6'. This space :F' is defined in CF.1. 
and, with the exception of m.s. test functions, exhausts 
the space of left multipliers of the II",y products neces­
sary for this work. But since the II",y vanish on the 
m.s., multiplicative relations of the II",y established on 
:F' are trivially satisfied on m.s. test functions. The 
product law is a convolution such that, for example, 

TI XYZ == TI",yTI yZ = f duTI",vCxy; ;u)TIy.(uz; 'Y)'). (1.10) 

Chains of 

(1.11) 

are formed in the manner of Eq. (1.10) and we are 
led to the P-ordering operation constructed in analogy 
to the T-ordering operation with ()ij ->- TI ij , 

P+(J1 • 00 Jm) == "" n J ... J (1 12) £. l OO 'ml m' . 
perm 

(1 .•. m) 

It is further proved in CF.1. that the current and Sop 
derivatives have the current representations on :F', 

TI
m omJo s 

(1 - Bij) = Rp(Jo; J1 ••• J m), (1.13) 
i>j~1 oa1 ' •• bam 

and 

IT (1 - Bij)S* . im(jms ~ P+(J
1

'" Jm), 
i>j~1 bal' .. oa m 

[all m = 1,2,"'J, (1.14) 

for the Rp product given in analogy to the R product, 

imRp(Jo; J1 ••• Jm) 

- L TIOloo • m[oo . [Jo, Jd, J2], 00 • J ml. (1.15) 
perm 

(1 ..• m) 

That these equations have at least formal signifi­
cance follows from the demonstration that the 
Feynman-Dyson algorithm is a formal solution. In 
the present work the equations are solved in perturba­
tion expansion for renormalizable interactions with 
only physical parameters and no divergent expressions. 
Only self-interacting Hermitian scalar fields will be 
considered. 

It is noted that the advantage of P ordering over 
T ordering lies in the ability of the TIij function to see 
a functions with up to three time derivatives. This is 
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adequate for the solution of renormalizable inter­
actions in perturbation expansion, but not for non­
renormalizable interactions. In an effort to present a 
consistent formulation of nonrenormalizable inter­
actions, a generalization in the manner of Chen has 
also been presented in CF.L 

IT (l - BWJ) (rJo ~ RrtJ(Jo; J1 ••• J m), 
i>j-l Jal" ·Jam 

(1.16) 
and 

IT (1 - BWJ)S* jmJms ~ P~VJ(J1 . " J m)· 
i>j-l Jal' .. Jam 

(1.17) 

The Rf{fJ and p~VJ products are identical to the Rp 
and P+ products with 

n .. __ n[N] 
l) 'l1' 

while 

n[N] = n[N](xy' l:n) xv - XY , r;./ 

== (KxKy)N(JXy11~V-I)(x - ~)11<J/-I)(y - 'f}), (1.18) 
and 

11 (N-I) X __ 1_ [ d4
p eipx 

ACR) ( ) - (27Tt Jc ACR) (p2 + m )N . 
(1.19) 

The present work serves to demonstrate that at 
least in perturbation expansion this framework is not 
adequate. A finite unique result requires a number 
of parameters that increases with the order of expan­
sion for nonrenormalizable interactions. 

The next section deals with the formulation for 
renormalizable interactions with a sample calculation 
in cp3 theory. Nonrenormalizable interactions are 
discussed in Sec. 3 with a summary in Sec. 4. 

2. THE S-MATRIX THEORY OF RENORMAL­
IZABLE INTERACTIONS 

The S-matrix formalism in asymptotic quantum 
field theory for renormalizable interactions l and its 
extension to nonrenormalizable interactions2 are both 
incomplete. The first because boundary conditions on 
the integral equation were stated incorrectly, and the 
latter because these boundary conditions were never 
stated. In this section, boundary conditions will be 
proposed for cp3 theories, with reference to the 
interaction Lagrangian, for a self-interacting, scalar, 
Hermitian field. A sample calculation is carried out 
in perturbation expansion. 

General Remarks 

The S-matrix equation for the nth order m-point 
function is given by4 

(1 - B1 .•• m)wi~) .. m = A~~) .. m' (2.1) 

4 Reference 1, p. 342. 

where 

BI "' m 

== BI.··m(XI ••· Xm; YI'" Ym) 
m 

== - KXl ••• Ka:m L (J XkXl ••• (J XkXk-l (J XkXk+l ••• (J XkX m 
k-I 

and 

m 

X 11R(xk - h) II 11(x; - Yi)' 
;-1 

i*k 

/ 
jmJms \(n) 

Wen) - \ 
1··· m - \()al' .. bamlo . 

The product BI ... mW~':) . . m is formed by 

BI ... mwi~) .. m == BI ... mW(n)(XI ... Xm) 

= I BI .. 'm(XI'" Xm; Yl'" Ym) 

(2.2) 

(2.3) 

X dYl' .. dYmW(n)(YI .•. Ym). (2.4) 

The inhomogeneity of (2.1), ,11':) .. In' is completely 
determined by the solutions of order I < n. The 
general solution is given by 

w~~) .. m = A~~)"m + X~~~'m' (2.5) 

where X~n.> .. '" is a solution of the homogeneous 
equation 

The physical solution is determined by fixing xi".)·. JlI 

with appropriate boundary conditions. 
It is interesting to note that the scattering amplitude 

on the mass shell (or with one leg off the mass shell) 
is completely contained in the homogeneous term, 
x~'! .. "'. This is a consequence of the fact that 

BI .·· ml ( ) --1, m.S. m.S.-1 
which implies 

(2.7) 

(1 - BI ... m)w~~) .. mlm.s.(m.s.-Il 

= Ai~) .. ml ( ) = 0 m.s. m.s.-l , 
or that 

(n) I (A(n) + (n) )1 
WI ... m m . ( -1) = I ... m Xl ... m ( -1) .s. m.s. m.S. m.s. 

(n) I = Xl' .. m m.s.(m.s.-U' (2.8) 

where m.s. (m.s. - 1) indicates that all momenta (all 
momenta but one) of the Fourier transform have been 
restricted to the mass shell. This further implies that 
for more than one leg off the m.s., the partition of 
wi") .. m into A~n.) .. m + X~~) .. m is not in genera) a 
Lorentz-invariant separation. To make this statement 
clear, let us look at the invariant homogeneous 
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solutions in momentum space, 

X(PI' .. Pm) = {b(~Pi)F(PI ... Pm)\ 2 .; 

,=1 all 1', =-m 

b(~Pi)P(PI ... Pm)\ • 2' 
,=1 all 1', *-m 

(2.9) 

where F(P1'" Pm)lall p,'=-m' is any invariant tem­
pered distribution constructed from the m.s. momenta, 
and P(P1' .. Pm) is a polynomial in the invariants 
formed from the off-m.s. momenta. This polynomial 
is further restricted by the constraint I; + Ik < 4, 
where I; , Ik are the powers of any two moments in any 
one term. Now for the particular case when all 
momenta are off the m.s., the requirement that both 
Ai"? . m and Xi'~) .. m be invariants would restrict xi":) .. til 
to its polynomial solutions. But by (2.8) this would 
imply that the scattering amplitude on the m.s. 
(m.s. - 1) would become a polynomial in momentum 
space (point support in coordinate space), or vanish. 
But only the first-order vertex and two-point function 
can have these characteristics, respectively. Thus, 
other than for these two exceptions, xi":) .. m' and 
therefore Ai".) .. In cannot be invariants with all legs 
off the m.s. The noninvariant solutions of the homoge­
neous equation, however, afford a large enough 
class of functionals to support interactions. For some 
legs on the m.s. the same discussion will hold with 
respect to the invariant solutions of the homogeneous 
equations for the B operator with some legs on the 
m.s. When all or all but one of the legs are on the 
m.s., the separation (2.5) becomes trivial by Eq. (2.8). 
Thus the homogeneous solutions completely deter­
mine the m.s. scattering amplitudes and are determined 
up to symmetric, invariant polynomials of restricted 
degree (/; + Ik < 4; for I; , lk the power of any two mo­
menta in anyone factor) by the requirement that 

(n) ,(n) + (n) 
W 1··· m = 1I.1···m X1···m 

be Lorentz invariant. It will be shown just how these 
polynomials can be determined by physically moti­
vated boundary conditions in the next section. 

In view of the above discussion, the requirement 
placed on the nth-order vertex function5 

B1 ... mwi ~) .. m = 0, n > 1, 
vertex 

leads to contradictions. This follows, since with (2.7) 
we have 

B1 . .. mwl~) . . m I = wl":) .. m I = 0, 
vertex m.s.(m.s.-1) vertex m.s.(m.s.-l) n > 1, 

---
• Reference I, p. 345. 

or 

_ ~ n (n) 
WI ... m - "- g WI··· m I 00 \ 

vertex m.s.(m.s.-l) n=O vertex m.s.(m.s.-l) 

= gwl
1.l .. m \ ' 

vertex m.s.(m.s.-1) 

a situation similar to that of the Lee model, where the 
first-order approximation is taken to be the exact 
vertex. 

Diagrams in S-Matrix Theory 

It is convenient at this point to generate Ai":) .. m' the 
inhomogeneity of the integral equation (2.1), directly 
from the current formalism, CF.1. Let us define 
Al ... m as the (1 - B1 · .. m) projection of J1 ... m , 

for 
(2.10) 

imbms 
J1 •.. m == S* (2.11) 

ba1 ' •• bam 

The useful characteristic of the (1 - Bl ... m) operator 
as far as perturbation theory is concerned is that it 
projects out the terms linear in J., and its derivatives. 
Thus AI ... m is entirely nonlinear in the currents and 
current derivatives. This can be seen explicitly using 
the identity6 

J1· .. m b [Jz + i(b/baz)]Jl.·. Z-I./+!' . 'm' (2.12) 

and the relation proved in Appendix A, 

m 

Bl ... m = II B i;· 
i>j=l 

The product used in (2.13) is, for example, 

B 123 = B12B13B23 

= J dUI dU2 dU3BI2(X1X2; UIU2)BlaCUIX3; YIU3) 

(2.13) 

X B 23(U 2U3 ; Y2Y3)' (2.14) 

The ordering of the pairs is immaterial, since we 
have [Bi;' BkZ ] = zero distribution on 

:F'(i,j, k, I = 1,' .', m; i -::;f= j, k -::;f= I), (2.15) 
since 

Bi; = 1 - (II;; + II;i) 
and the IIi; commute on :F'. 

With (2.13), (1 - B1 ... m) can be expressed 

m 

(1 - B1 •. . m) = 1 - II Bi; 
i>1=l . 

(2.16) 

= 1 - B12 + (1 - itt Bi1)B12' 

un *1,2 

6 F. Rohrlich, Perspective in Modern Physics, R. E. Marshak, Ed. 
(Interscience Publishers Inc., New York, 1966). 



                                                                                                                                    

556 J. G. WRAY 

which upon further expansion yields 

(1 - B1 ... m) 

= (1 - B12) + (1 - B13)B12 
m-1 

+ (1 - B14)B12B13 + ... + (1 - B1m) II Bli 
i~2 

m m 

+ (1 - B23) II Bli + ... + (1 - Bm- 1•m) II Bij' 
i=2 i> ;=1 

J*m-1 
(2.17) 

Now, 

A 1 "' m 

b (1 - B1 ... m)J1"'m 

:b {(1 - B12) + (1 - B13)B12 

m-1 
+ (1 - B14)B12B13 + ... + (1 - B1m) II Bli 

i~2 

m 

+ (1 - B23) II Bli + ... 
i~2 

+ (1 - Bm- 1' m)iit Bo}J1 ... m , (2.18) 

1*m-1 

which can be seen to be nonlinear in terms J1 . .. ! , 

1 s: I < m, and their derivatives. This follows, since 
for any r, s = 1, ... ,m (r ::;6 s), 

m ( '15) (1 - B.s)J1 ... m b (1 - B.s) II J; + _1_ J.s 
;~1 ba; 
ii:.r,s 

s m ( iO) = II J; + - (1 - B.s)J.s 
1~1 ba f 

1* •• s 

s m ( iO) = II J; + - P(J.Js) 
j~I oa; 

ii=r,s 

(2.19) 

is nonlinear in JI ... ! (I ~ 1) and their derivatives. 
Explicitly, with (2.19), (2.18) can be written 

AI'" m = II J; + - P(JIJ2) 
s m ( ib ) 

;~3 oa; 

m m-2 ( iO) + II Bij II Jk + - P(J m-IJ m), 
i>;~1 k~2 bak 
ii:m-l 

(2.20) 

proving the nonlinearity of AI' .. m for all m. Thus in 
perturbation theory, Ai":) .. m is determined by Ji~) .. m 

all k < n, and the inhomogeneity of the integral 
equation (2.1) is obtained by taking the vacuum 
expectation value of AI' .. m' 

AI' .. m = (AI' .. m)O' 

which in nth order becomes 

(2.21) 

Next it will be proved that Ain.) .. m can be partitioned 
into terms labeled by the particular Feynman diagram 
to which they contribute. We have 

A~":) .. m = ~ Ai":) . .z: m' (2.22) 
D. {all diagrams} 

for 

Ain.)~ m == all terms E Ai":) .. m that contribute only to 

the diagram D. (2.23) 

Equation (2.22) can in turn be used to define the 
integral equation for wi,,:),n,m' 

(1 - BI"'m)W~~)Pm = A~~) . .z:m' 

where wi":).~ m == solution corresponding to 
gram D. . 

This is consistent with (2.1), since 

(n) _ " (nW WI ... m - £., WI ... m 
D. {all diagrams} 

satisfies 

by virtue of (2.22). 

(2.24) 

the dia-

(2.25) 

The piece of Ai":) . m associated with one particular 
Feynman graph, Ain.)D m' is identified in the formal 
limit of unrenormalized Feynman-Dyson (FD) theory. 
That is, Ai") .. In partitions into terms that can be 
identified by the diagram to which they contribute in 
unrenormalized FD, a formal solution of Eq. (2.1). 
Thus, Al,:)D", is uniquely defined for each diagram. 
The uniqueness follows, since formally the only 
difference between the renormalized and unrenormal­
ized solutions is a difference in boundary conditions. 
But at least if the theory is restricted to a one-vertex 
model, different boundary conditions, as it will be 
shown, cannot change the topology or graph charac­
terization of Ai").D", and therefore of win)D In' It 
remains to be shown that 

(i) The term Al":>.D", characterizes the unrenormal­
ized Feynman graph D. 

(ii) Boundary conditions cannot change the topology 
already presented by A~'!.~ m' 

A typical term in the expression for Ai":) .. m given 
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(2.26) 

with B some c-number coefficient composed of a 
suitable product of Bi/S. Further, the vacuum 
products of (2.26), 

/ m ( iO) \(n) 

\ II Jj + - J1Jk/ ' 
jd oa j 0 

j*I,k 

for example, can be expressed as a linear combination 
of factors, at least bilinear in O(IX;)S, defined as 

(2.27) 

S = S or S*. (2.28) 
That is, 

max 
= I I C{(Xi}(b(a')so(a2)S··· o(ar)S)~n), (2.29) 

r~2 sets {ai} 

for the sets, {(Xi}, made up from the integers 1, ... , m. 
For example, in the simplest case, m = 2, we have 

(JlJ2)~n) = / S* iOS S* iOs\(n) 
\ oal oajo 
/ - ioS* ibs\(n) 

=\~ bajo ' (2.30) 

which is of the form of Eq. (2.29). Expanding S in 
terms of point functions, the typical term of (2.29) 
becomes 

(o(a,)s ... o(ak)S)o 

X (dYl ... dYr2) ... (dzl ... drr.) 

x [S(Xl ... x r,xr,+l ••. xr,+a,) 

X S(Yl ... Yr.Yr2+l ... Yr2+a2) ... 
x s(z ... Z Z ... Z )](1.') 

1 Tk rk+ 1 Tk+a:k 

X (:a ... a ::a ... a ·····a ... a .) 
Xl XrJ 111 Uri - • Zl Zr

k
' 0 , 

(2.31) 

for S = S 

for S = S*. 

(2.32) 

The point functions s(xl ' •. xp) appearing in (2.31) 
are all of order 1< n, since k ;;::: 2 (k = number of 
point functions appearing in anyone product). Thus, 
if we assume that a diagram representation exists for 
all point functions of order 1< n, then (2.31) gives 
us a natural program for labeling each of its terms 
by the topology represented by one and only one 
graph. The vacuum products of (2.31), 

('a "'a "a "'a ·····a "'a .) • Xl X'rl' • 111 V"2' • %1 Zrk ' 0' 

reduce to all possible products of Ll±(Xi - Yi)' 
which saturate the internal (integration) variables 
(Xl' .. xr)(Yl ... Yr2) •.• (Zl ... zr.) and connect only 
variables of different sets. The topology of nth order 
is to be identified by associating a line with each 
Ll±(x; - Yi)' This serves to connect two inserted 
parts represented by a diagram from each of two­
point functions s(x l '" xp) of (2.31). Thus, since 
each product of Ll+(x; - Yi) will represent a unique 
pairing of all internal variables between different sets, 
and all diagrams for s(l)(xl ••• xp), (l < n) are known 
by assumption, this prescription does assign a unique 
diagram label to each term of (2.31). Now by repeating 
this analysis for all of A~~). m' one can group those 
terms labeled by the same diagram. This grouping then 
defines A~n)? m as the collection of all terms of A~n) .. m 
labeled by the same diagram D. 

To prove that this topology has physical content, 
it must be demonstrated first that apart from intro­
ducing new vertexes, the homogeneous solutions 
cannot alter the topology as defined. This will be 
adequate, since we are interested here only in single­
vertex models. As explained earlier, A~~)? m can be 
used to define w~n).~ m through the integral equation 

(1 - Bl ... m)wi~).~ m = Ai~).~ m' 

with the general solution 

(2.33) 

As previously discussed, xi~).~", is first of all the 
Lorentz-invariant completion of Ain)~",. But from 
(2.26) the structure of Ai'~).~ '" is seen to be that of 
manifestly invariant vacuum products, 

with manifestly noninvariant c-number operator 
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coefficients represented by BIl lk . The role of X~~) . .I? '" is 
therefore seen to be that of adding appropriate cor­
rections to these coefficients. Thus, up to invariant 
polynomial solutions of the homogeneous equation, 
X~n.)~ m will necessarily have the same topology as 
A~~)? m' since the topology as it has been defined is all 
contained in the invariant factors 

The polynomial terms of X~".) . .I? m are then to be fixed 
by boundary conditions in such a way that they 
cannot introduce new topological structures in the 
form of additional vertexes. Thus the homogeneous 
term of (2.33) is so restricted that its diagram topology 
is the same as A~'~).~ In' uniquely determining the 
topology of w~'~)~ '" to be that of A~'~)? '" . 

That the diagram topology defined for A~".) . .I? m is in 
fact a physical partition of A~".) .. '" follows from its 
formal identification with FD in the limit of the un­
renormalized solutions. The integral corresponding 
to any nth order m-point graph Din unrenormalized 
FD can be found to correspond to A~".) . .I? '" in the 
following way. Each term of A~'~)~ '" is determined up 
to operator coefficients BIlkl (symbolically) 'by a 
particular graph with inserted diagrams of order 
t < n, connected by lines associated with ~± functions. 
But up to coefficients of appropriate O-function 
products, this same graph can be generated in the 
unrenormalized FD integral by judicious substitutions, 

~c(XI - x2) --+ Ox x ~+(Xl - X2) + 0_ x ~+(X2 - Xl) 
1 2 ""'2 1 

for those lines not contained in the inserted parts of 
the graph of the Ai~~~ m term. Now since xi~):? m is 
equipped to manipulate these coefficients and since it 
has already been proved that the unrenormalized FD 
is a formal solution of the equations (CF.I.), it is 
concluded that 

1(n)D (formaIlY)~ (n)D 
Al ... m 7' W1'" m' 

(FD) 

when the boundary conditions appropriate to unre­
normalized FD are applied. 

This section has presented a program for generating 
exact S-matrix equations directly from the current 
formalism. If one resorts to a perturbation expansion, 
we have demonstrated a diagrammatic approach to the 
effect that in the limit of unrenormalized FD it re­
produces Feynman diagrams. It has also been shown 
that boundary conditions play a crucial role in 
determining the topology by defining the vertex 
function (or functions) of the theory. In the next 
section physically motivated boundary conditions 

will be established that lead to the anticipated result 
of a two-parameter solution to renormalizable 
theories in perturbation expansion. 

Boundary Conditions in fP3 Theory 

The problem of establishing physically motivated 
boundary conditions (b.c.) in a perturbation expansion 
that leads to a unique solution for the S matrix in 
terms of the two parameters, 

m = renormalized mass, 
g = renormalized coupling constant, 

has been discussed to some extent in the last two 
sections. It has been shown that the inhomogeneity 
of the integral equation Al~) .. m is not in general 
Lorentz invariant such that the requirements: 

(i) Lorentz invariance, 
(ii) symmetry of WI ... m under permutation of 

its arguments, 
determine wi~) .. m up to invariant symmetric xi~~. m 

terms. These are symmetric, invariant polynomials of 
the transform momenta PI ... Pm with the restriction 
that 

(2.34) 

for Ij' Ik the exponents of any two momenta in anyone 
factor. Thus the role of b.c.'s is that of fixing these 
polynomials. 

A first attempt might be to choose the b.c. 

lim W(n'(Pl'" Pm) --+ 0 for all m with n > 1. 
_Pi2. 4 00 

(2.35) 

This uniquely determines all solutions, since when a 
X(PI ... Pm) is determined such that (2.35) holds, only 
polynomials also satisfying (2.35) can be added. But 
there are no polynomials satisfying (2.35), so that 
the solution is unique. However, there are rather 
serious problems with this solution. Supposedly, 
there are at least two phenomenologically determined 
parameters m and g imbedded in the solution. But 
the b.c. (2.35) has completely determined the theory. 
There is no arbitrariness left with which to match the 
parameters with measurements. That is, it is impossible 
at this point, for example, to require that ween) ) have 

P1P2 

a zero on the mass shell (m.s.), to fix the mass at the 
physical value, or to demand that the form factor at 
some value of its momenta equal the coupling con­
stant, fixing that parameter. Beyond these contradic­
tions it becomes apparent after computation to just 
2nd order that the b.c. (2.35) can be satisfied only in 
a formal sense, since divergent terms necessarily 
appear. Thus it is clear that not just any b.c. can be 
applied. In fact, the requirements of the theory, once 
the first Born term is specified, appear to determine 
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uniquely the boundary conditions of a consistent 
theory. 

The set of boundary conditions leading to finite 
results for (l theory will now be developed. For the 
2-point function, the b.c. (m = observed mass), 

-<n)( ) 
I· OJ PIP2 - 0 
1m 2 2 - , 

_p,2_ m 2 (PI + m ) 
(2.36) 

fixes all polynomials and introduces the physical mass 
shell by requiring that the 2-point function have a 
2nd-order zero at pi = _m2• It is a unique result, 
since there are no polynomials satisfying (2.34) that 
can have 2nd-order zeros in p2. It is noted that a first­
order zero would not have led to unique results, since 
symmetric invariant polynomials can satisfy (2.34) 
and have a first-order zero in p2. However, Eq. (2.36) 
is equivalent to the statement 

(2.37) 

since BI2 on any functional that approaches the mass 
shell as (pi + m2)2 is always zero. But it is shown in 
Appendix B that (2.37) is a consequence of the 
stability of the vacuum and single-particle states. 
Thus the 2-point function is completely determined 
by the theory and no additional constraint is necessary. 

For the 3-point function, the situation is slightly 
more complicated. This is because the coupling 
constant is defined in terms of the proper vertex only, 
necessitating an identification of proper diagrams 
before b.c.'s can be applied. The identification of 
diagrams was discussed in the last section. Improper 
diagrams are simply connected, while proper diagrams 
are those remaining. 7 Thus, defining the proper part 
of oji~~ and ~i~~, the Fourier transforms of OJi~~ and 
Ai~~, we have 

W}~)(PIP2P3) == proper part of W<n)(PIP2P3)' (2.38) 

~<P)(PIP2P3) == proper part of Xn)(PIP2P3), (2.39) 

satisfying the equation 

(2.40) 

The coupling constant is defined by the exact proper 
vertex function at a particular value of its variables. 
The point (in phase space) at which the variables 
are fixed is arbitrary, and we choose the definition 

WP(PIP2P3)/ == O(fpi)/ g. (2.41) 
Pl!=P2

2=_m2 
i=l Pl!=P2

2=_m2 

Pa ~O Pa ~O 

Of course, since W P(PIP2P3) is symmetric, the asym­
metry between 1, 2, and 3 in (2.41) is only apparent. 

, J. M. Jauch and F. Rohrlich, Theory of Photons and Electrons 
(Addison-Wesley Pub!. Co., Inc., Reading, Mass., 1959), p. 206. 

Now in perturbation theory with 

and 

00 

- ( ) '" n-<n)( ) OJ P PIP2P3 = L. g OJ P PIP2Pa, 
n~O 

gW(1)(PIP2Pa) == gO C~Pi)' 
Eq. (2.41) implies the boundary condition 

(2.42) 

(2.43) 

(iii) li
2
m W<P)(PIP2Pa) Ip,2~p"~_m2 --+ 0, n > 1. (2.44) 

P3 -+0 

Thus with symmetry in (PIP2Pa), we have the require­
ment that W<P)(PIP2Pa) vanishes whenever two legs go 
on the mass shell and the square of the third goes to 
zero. 

However, (2.44) does not uniquely specify 
wj1J)(PIP2Pa) , since there exist& invariant symmetric 
polynomials which satisfy both constraints (2.34) 
and (2.44). So the question is raised: Is there any 
additional condition that will fix these polynomials 
and still introduce no new parameters? The answer is 
in the affirmative and is given by the high-energy 
boundS 

(iv) (2.45) 

Additional polynomials are forced to be constants 
by the high-energy condition (2.45) and the constants 
are forced to vanish by the zero condition of (2.44). 
Terms linear in a particular momentum are converted 
to bilinear ones, e.g., by 

6(~~~,Pi) ( ) 2 
PI . P2 ~ - Pl· PI + Pa = - PI - PI . Pa, 

and therefore do not satisfy the high-energy limit 
(2.44), i.e., 

lim Pl· P2 B 0 
2 2 • 

-p, -00 -PI 

Improper vertex functions are completely deter­
mined by requiring that the simply connected parts of 

8 This point was further illuminated by Wilner, who suggested 
that Eq. (2.45) might actually follow from the LSZ theorem on the 
vertex. That this is indeed so can be seen by the following. The LSZ 
theorem says that 

I· W(P'P2Pa) I 0 
1m 2 t = 

-Pa2~00 (-Pa) p,2~p22~_m2 

for a rp3 interaction. This determines X up to terms that are non­
vanishing on the p, and P2 mass shells and independent of Pa, i.e., 

X ~ A + (pi + m2)B + (p! + m2)C. 

But since X must be symmetric, we m~st have 
a 

X,...., A + B ~ (p; + m2
), 

i=l 

which satisfies the LSZ theorem for B = o. Thus X ~ A, which is 
determined to be A = 0 by (2.44), which satisfies the requirement of 
self-consistency for the definition of the coupling constant. 
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• - (n) () • f an Improper vertex Wimproper PIP2P3 must sabs y 
the boundary conditions of the proper diagrams to 
which they correspond. Uniqueness is guaranteed, 
since additional polynomials must reflect the boundary 
conditions satisfied by the simply connected proper 
parts. But we have already seen that these conditions 
completely determine all polynomials. 

For the m-point function, m ~ 4, the only boundary 
condition which introduces no new parameters into 
the theory, yet fixes the polynomial terms in Xl ... m' 

is the one chosen by Pugh,5 

(v) lim W(n)(PI'" Pm) --. 0, for all nand 
_Pi

2
-+ 00 

m > 4. (2.46) 

That this condition and indeed all high-energy 
boundary conditions are compatible with existence 
requirements is best expressed in the language of 
subtractions. Equation (2.46) is simply the statement 
that no subtractions are needed in primitive m-point 
diagrams for m ~ 4 to all orders in rp3 theory. Like­
wise, (2.45) is the statement that one subtraction is 
needed to all orders for the primitive diagram of the 
vertex in rp3 theory. This subtraction is necessitated not 
by existence requirements, however, but rather by the 
introduction of a coupling constant and the associated 
self-consistency requirements or boundary conditions. 
The two-point function satisfies Eq. (2.36), which is 
equivalent to the requirement of two subtractions, 
one more than is necessary for existence. 

Thus, in summary, the constraints sufficient for 
a two-parameter solution of the integral equation in 
rp3 theory are: 

(i) Lorentz invariance. 
(ii) Symmetry of win). m under permutation of its 

arguments. 

(iii) l\m WY;)(PIP2P3) Ip/~p"~_m2 = 0, 
P3 -+0 

(n > 1) 

and 

W(1)(PIPZP3) = go C~p} 
-(n)( ) 

(iv) li:n WI' Pl~2P3 --.0, n > 1. 
-Pi -00 -Pi 

(v) all n. 

An example is worked out in the next section in order 
to demonstrate the efficacy of this program. 

Calculation in cp3 Theory 

To demonstrate the techniques, the contribution 
to the 3rd-order vertex theory represented by the 
diagram D, 

(2.47) 

will be derived. Starting from current-operator 
expressions, the integro-differential equation for the 
3-point function will be obtained. In perturbation 
expansion the contribution to the 3rd-order graph D 
will be identified. Then a unique solution is found by 
applying the boundary conditions. The homogeneous 
solution will be determined first as the Lorentz 
invariant completion of the inhomogeneous term and 
second by the boundary conditions applicable to an 
improper vertex function as discussed in the last 
section. 

The equation containing the graph D is the 3-point 
equation in 3rd order, 

(1 - BI23)Wg~ = Am. (2.48) 

Before perturbation expansion, the inhomogeneity 
can be represented by the vacuum of the operator 
reduction 

A123 == (1 - Bl23)J123 

= (1 -}~LBij)JI23 
= tJIY -Bij) + c~e[Bl2(1 - B23)]}JI23' 

(123) (2.49) 

But from (1.14) we have 

3 

II (1 - Bij)JI23 = P(JIJ2J3), 
i>i=l 

and 

BIll - B23)J123 = Bl2(l - B23)(J1 + i%al)J23 

= B12(J1 + i%al )(1 - B23)J23 

(2.50) 

= B12(J1 + i%a1)P(J2J3), (2.51) 

such that (2.49) becomes 

A 123 = P(JIJ2J3) + L [B12(J1 + i%a1)P(J2J3)]' 
cycle 
(123) (2.52) 

Now the inhomogeneity of (2.48) is simply 

Am = (A123>~3) = ({P(J1J2J3) 

+ L B12 [(JI + i%a1)p(J2J3)]}>(3). 
cycle / 0 
(123) 

(2.53) 

To evaluate (2.53) the solutions of order less than 
three must first be computed. The first-order assump­
tion determines the vertex and must be a solution of 
the homogeneous equation, since the inhomogeneity 
necessarily vanishes~ To establish the rp3 theory, we 
assume in coordinate space 

and 
w(1)(X1X 2X 3) = -o(x1 - X 2)O(X2 - x3), (2.54) 

(2.55) 
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such that 

J (1) _ (S* ibS)(l) = .1.. 2. 
x - 2·ax·· 

ba x 

(2.56) 

The second-order solutions are uniquely determined 
by the theory: 

(i) 2-point function: 

W(2)(X1X2) = (P(J x/ x.»~) (2.57) 

for 

pel) = (i/161T2)()(p,2 - 4m2)(,i - m2)-2 

X [(p,2 - 4m2)/p,2]!; (2.59) 

(ii) 4-point function: 

W(2)(X1 ' .. x4) 

= ti I [b(x1 - x2)b(x3 - X4)~c(X1 - x3)]; (2.60) 
pairs 

(iii) I-point function: 

W(2\X1 ' •• xz) Il;"2,4 = O. 

Using (2.56) the factors containing three currents 
in (2.53) can be seen to contribute only to the triangle 
graph. Using the rules for defining the diagram 
topology of a particular factor, we obtain 

(J1J2Ja)~a) = Ka~: :a~: :a~:)o 
= ( - it~+(Xl - X2)~+(X2 - X3)~+(X1 - x3) 

E A (2.62) 

Thus the contributions to the graph D are all con­
tained in the factors of (2.53) with only two currents. 
Representing the contributions to this graph by }. D, 

we have 

(2.63) 

The typical vacuum product we must look at is, for 
example, 

X = / ~(J J )\(3) _ / ~[S* ibS S* ib~\(3) 
123 - \ 2 3 / - \ / ba1 0 ba1 ba2 ba 0 

/ ib [ . bS* . bSJ\(3) =\- (-1)-1- / ' 
ba1 ba2 ba3 0 

X123 = / ~ [bS*(2) bS(1) + bS*(1) bS(2)J\ . (2.64) 
\ba1 ba2 baa ba2 baa /0 

Now, from (2.54)-(2.61) and the definition of S, we 

have 

S(1) = -ifd;:a~:, 
3! 

(2.65) 

S(2) = (- i)4 J. f d;l ... d;4 
4! 2 

x I [15(;1 - ;2)15(;3 - ;4) 
cycle 

(1· . ·4) 

X ~c(;l - ;3)] :ah ... ag.: 

+ t( - i)2 f d;l d;2W(2)(;1;2) :ahah : 

= f d;l d;2[ii~cC;1 - ;2):a~,a~.: 
- tW(2)(;1;2) :ag, ag.:], (2.66) 

~o 
;r 

bS(2)/baxl = f d;[ti~c(Xl - ;):aXla~: - w(2)(x1;)ag], 

(2.68) 

(2.69) 

b2S(2)/ba xlbax• = i~c(Xl - x2):aX, aX.: + tib(x1 - x2) 

x f d~~cCX1 - ;) :a~: - W(2)(X1X2). (2.70) 

Substituting these results into (2.64) yields 

XXlX,X. = <{[(-i)~cCX1 - x2):aX,ax.: - tib(x1 - x2) 

x f d;~cCX1 - ;) :ai:Jc -ti):a~.: 

+ ti:a;.:[i~cCX1 - xa):ax,ax.: 

+ tib(x1 - x3) f d;~c(Xl - ;):ai :]})o' 
(2.71) 

The vacuum products of (2.71) then reduce to 

XXlX,X. = {~cCX1 - X2)~+(X1 - X3)~+(X2 - x3) 

+ b(x1 - x2) f d;~C(Xl - ;)~~(~ - X3)] 

+ {~C(XI - xa)~+(X2 - X1)~+(X2 - X3) 

+ b(x1 - x3) f d~~cCX1 - ~)~~(X2 - ~)l 
(2.72) 

But only the 2nd and 4th terms have the topology of 
the graph D, (2.47), the remainder having that of the 
triangle graph, (2.62). If these two terms are now 
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labeled X&'a' the equation for the diagram D becomes, 
using (2.53), (2.64), and (2.72), 

(2.73) 
for 

A~!~~''''3) = 2 {BI2[II2aX~''''''''3) + IIa2X~''''''''3)]} (2.74) 
cycle 
(12a) 

= i 2 BI2{II23fd$~JXl - $)[b(XI - X2) 
cycle 
(12a) 

X ~!($ - Xa) + b(XI - Xa)~!(X2 - m 
+ IIa2f d$~JXl - $)[b(XI - Xa) 

X ~!($ - X2) + b(XI - X2)~!(Xa - $)]}- (2.75) 

Let us define the quantity 

Y("""""'3) == BI2II23b(XI - x2) f d$~cCXl - $)~~($ - xa) 

= BI2II2aO(XI - x2) 

X Jdp,2 ~(l) 2 ~+(X2 - xall), (2.76) 
(m - p,) 

where p(p,2) is given by (2.59). But (2.76) can be 
decomposed further by the separation, 

Y(:Q",X3) 

= B12{ o(x1 - x2)II23 + [II 2a , b(Xl - x 2)]} 

X fd 2 pe,,,,?) ~ 2(X - x I /1.
2) (2.77) 

P,(2 2)+2 ar-m -p, 

= b(XI - x2)K",K"/J",,X3 

f 2 p(p,2) ~ ( I 2) I 
X dp, (m 2 _ p,2)a + X2 - Xa P, + X("""""'3)' 

(2.78) 
for 

XL""""'3) == BI2 [II 2a , b(XI - xz)] 

X f dp,2 (;'(~)p,2) ~+(X2 - xal p,2). (2.79) 

The term separated off in (2. 78), X~"''''X3) , is shown to 
be a solution of the homogeneous equation at the end 
of this section. The first term of (2.78) has absorbed 
the multiplier B12 since it is an eigenvalue-one eigen­
solution of B12 . The factor ~A(X2 - $2)~R(Xa - ~a) 
of II za has been absorbed under the integral over p,2 
as an increase in the power of the denominator 
(m2 _ p,2). 

Proceeding in the same manner, it can be shown 
that 

xl!, """3) == BI2 II 230(XI - Xa) f d$~JXl - $)~!(X2 - ~) 
(2.80) 

is also a solution of the (1 - B12a) homogeneous 
equation such that with (2.80), (2.78), and (2.76) Eq. 
(2.75) becomes 

A~,,,,.,,,,) = i 2 {O(XI - x2)K""K"'3 
cycle 
(12a) 

f 2 p(p,2) [() ~ ( 2) 
X dp, (m2 _ p,2)3 "'2"'3 + X2 - Xal P, 

+ ()"'3",,~+(Xa - x21 p,2)] + xf!;",.",.>}. (2.81) 

or 

APx'''''''3) = i 2 {b(XI - x2)K""Kx3 
cycle 
(123) 

fd 2 p(,i) ~ ( I 2) III } 
X P, (m2 _ p,2)a c X2 - Xa P, + XCI',,,,,,,,) , 

(2.82) 
for 

III I + I + II + II X(",X2X,) = X(x'x'x.) X(x,x.",,) XC",,,,,,,,,) X<x,"'.x,) . 
(2.83) 

Thus Ar:"",xa) is partitioned into an invariant term 
plus a solution of the homogeneous equation X~~~"."'a) . 
The particular solution of (2.73), 

(2.84) 

is obtained from the general solution with b.c.'s to 
determine X(:" x x I up to invariant symmetric solutions 

, , a IY 
of the homogeneous equation, X(",x.".) , 

such that with (2.82) and (2.84), 

W~~~~'X3) = i 2 {O(X1 - x2)Kx,Kxa 
cycle 
(12a) 

(2.85) 

J d 2 pel) ~ ( I 2)} IV 
X P, (m 2 _ p,2)a c X 2 - Xa P, + X<"''''X,), 

(2.86) 

Since the graph D is an improper vertex part, the 
invariant homogeneous solution X~:'''''''a) is to be fixed 
by requiring that W~~~~X2) satisfy the b.c.'s implied by 
its simply connected factors. Thus, since this graph 
factors into a 1st-order vertex and a 2nd-order self­
energy part, we have the b.c. in momentum space 

lim li/l)(PIP2Pa)liJPa I m2)r7/2I(PaP4) 
2 2 

-.P3 -m 

= C l~m 20 (±Pi) 2 12 . (pi + m2
)20(Pa + P4) 

-Pa --+m i~l Pa + m - IE 

= C_Li'~m20(~/i)O(pa + P4)(P; + m2
), (2.87) 
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for C a factor independent of pg. But the first term of 
(2.86) does not satisfy this b.c., since it -+ 0 as 
(pi + m2)2 when pi -+ _m2 , thus demanding the fol­
lowing polynomial for X;~P'P., where 

FT[ IV ] -IV X("'''2''') = X(PIP2Pa) . (2.88) 

The Fourier transform of (2.86) yields 

AI!~~2P3) =It{bctPi)(P~ + m2
)2 

fd 2 p(,i) ~ ( I 2)} -IV 
X fl (m2 _ fl2)3 C PI fl + X(PlP2P3) ' 

which can be written 

i(3)D 
I\(PIP2P,) 

= ~l {b ctPi) (p~ + m2
) 

(2.89) 

X f dl (m;~2~2)3 (p~ + l + m2 -l)~c(p! I fl2)} 

+ -IV 
X(PlJl2P.) 

= ~l {b ctPi) (p~ + m2
) 

fd 
2 p{fl2) ~ ( I 2)} -V x fl (m2 _ fl2)2 C PI fl + X(PlP2P3) ' (2.90) 

for 

-V _ -IV 
X(PlP2P.) = X(PIP2P.) 

+ It {b(~p) (p~ + m2
) f dl (m~~2~2)3}' 

(2.91) 

The additional contribution to the homogeneous 
term (2.91) is just an invariant polynomial solution. 
The remaining invariant part of (2.90) now satisfies 
the b.c. (2.87) and we have 

(2.92) 

The solution, uniquely determined by the b.c. is, 
therefore, 

WI!),~,P') = It{b(lpi)(p~ + m2
) 

X fdfl2 ;(fl2) 2 2 ~ipI I fl2)}. (2.93) 
(m - fl) 

It remains only to prove the contention made 
earlier that the term separated off in (2.78), xl"""'2"") ' 
is a solution of the homogeneous equation, 

(1 - BI23)X~"'''2X') = O. 

This follows since the factor B I2 [II 23 , O(XI - x2)] has 

only point support in time, with the number of time 
derivatives satisfying the familiar constraint, 'YJi + 
'YJj < 4 (i,j = 1,2,3), for 'YJi' 'YJi' the exponents of any 
two time derivatives in anyone term. This can be 
seen as follows. The BI2 can be dropped, since it 
commutes with the II 23 and reduces to the unit 
multiplier on b(XI - x 2). Thus we have for h'''2X• the 
factors to the right of the commutator in (2.79), 

[IT 23 , b(XI - x2)]!",X2X• 

= IT23b(XI - x2)!"'"2''' - b(xi - X2)IT 2d",X2X• 

= 1(",1(x30"2'" 

X f d~2 d~3~A(X2 - ~~)~R(X3 - ~3)b(XI - ~2)f"';2h 
- b(XI - X2)1("21(".0",x. 

X f d~2 d~3~A(X2 - ~2)~R(Xa - ~3)fxl;'§" 

Now commute the 1(" 1(x with the 0" x to form the 
2 3 2 3 

factors 

[IT 23 , b(XI - X2)]!XlX2X. 

= 0X2x•b(x l - X2)!",,,,,X, - b(XI - X2)O"2X.!Xl"'''' 

+ [1(",1("., 0"2X.] 

x f d~1 d~2~A(X2 - ~2)~R(X3 - ~3)b(XI - ~2)!"'h§. 

- b(XI - X2)[1("21(x3' ° x'x.] 

x f d~1 d~2~A(X2 - ~2)~R(X3 - ~3)f",g,§ •. 

But these last two terms are homogeneous solutions 
of both (l - B12) and (l - B23) on :;', e.g., 

BI2 [1(x,1(X3,0",X3] 

x f d~2 d~3~A(X2 - ~2)~R(X3 - ~3)b(XI - ~2)!"'M3 
= BI2{IT230(XI - x2) - 0",X3b(xl - X2)}!XlX,X3 

= {IT23BI20(XI - x2) - BI2b(XI - X2)O",X3}!Xl"'X, 

= [1(X,1(x3' O,,'x.] 

x f d~2 d~3~A(X2 - ~2)~R(X3 - ~a)b(XI - ~2)fXlM3' 

Further, we have 

(1 - B23)[1(x,Kx• ' 0"'''3] = 0 , 

since [1(x,K"., Ox,,,,] only has point support in time and 
satisfies the derivative constraint, 'YJ2 + 'YJ3 < 4. These 
terms are, however, also homogeneous solutions of 
(l - BIa), since point support in (x~ - x~) is guaran­
teed by their being homogeneous solutions of (l - B l2 ) 

and (1 - B23)' The derivative requirement is satisfied 
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since there are no derivatives in x~, while the deriva­
tives in x~ already satisfy the constraint by virtue of 
its being a homogeneous solution of (1 - Bd. Thus 
by (2.13), [fI 23 , b(Xl - x2)]!x,X2Xa is proved a solution 
of the homogeneous equation in (1 - B123)' 

Discussion 

The boundary conditions for the cp3 and cp4 models9 

follow naturally from an understanding of the roles 
played by Xl'" m' the homogeneous solution. First, 
it is the Lorentz-invariant completion of the inhomoge­
neous term of the integral equation, Ai~). m' Then 
the invariant polynomial solutions of the homogeneous 
equation served as subtractions. The number of 
subtractions is determined essentially by the order of 
the zeros at finite values of the invariants formed 
from the momenta or the degree of polynomials 
appearing for large momenta. Where the subtractions 
are to be made is determined by the position of the 
zeros. The number of subtractions in this formalism 
is necessarily limited to two, since the polynomial 
solutions of the homogeneous equation are limited 
in degree by Eq. (2.34). The program of Chen lifts 
this restriction, but encounters other difficulties as 
will be discussed in the next section. 

The major advantage of deriving the S-matrix 
equations from the current formalism has been the 
ability to make clear distinction between the non­
invariant operator coefficients Bij '" fIkl and the 
invariant vacuum products of currents and their 
derivatives. Since the Bij ' •• fIkl coefficients play a 
role somewhat analogous to 8-function coefficients in 
FD, it was possible to identify the Feynman graph 
topology of the integral equation itself. One other ad­
vantage is essentially that of any operator formalism. 
Before applying perturbation theory, one is at liberty to 
use operator identities to simplify a term as much as 
possible, reducing it to a minimum number of factors. 
For example, doing perturbation theory in the form 

S* ibS S* ibS 
bal oa2 

is much more strenuous than the equivalent form 
(under unitarity), 

ioS* ioS 

There is no inherent problem in extending this work 
to physical models such as quantum electrodynamics 
and this will probably be done in the near future. 

• The cp' interaction is discussed in Ref. 3. 

3. FINITE S-MATRIX THEORY 

The work of Chen2 has extended the SOP theory to 
a wider class of interactions. However, the theory 
is by no means complete. Though Chen has proved 
the existence of solutions, there is no mention of 
what or how many supplementary conditions and 
parameters must ultimately enter the theory to 
specify a particular interaction to some order in 
perturbation expansion. These questions are best 
discussed in the context of S-matrix theory, where 
the supplementary constraints take the form of 
boundary conditions on the solutions of an integral 
equation. The next section, therefore, develops the 
S-matrix theory that is the natural extension of 
Chen's SOP theory. Then the boundary conditions for 
self-interacting Hermitian scalar fields represented by 
the Lagrangian cpr (r > 4) will be formulated. It is 
found that, though the program is finite to any order 
of perturbation theory, the traditional difficulty of 
nonrenormalizable perturbation theories is still pres­
ent. The number of parameters necessary to determine 
the solution is an increasing function of the order in 
perturbation expansion. These parameters enter the 
theory through boundary conditions. 

Finite S-Matrix Theory 

By finite S-matrix theory, we mean the extension 
of the Pugh integral equation4 for the m-point function 
and appropriate boundary conditions in the manner 
that Chen2 has extended the SOP formalism. The 
program is developed in detail, since there are non­
trivial steps involving the generalization of Bf~'l == 
1 - fIfi'l - fI~~"l to an m-point object BP".l.m and 
its associated integral equation, 

(1- Bf~'!'m)Wl"'m = }.f'~!'m' (3.1) 

Equation (3.1) must reduce to the nonperturbative 
form of (2.1) for N = 1, 

(2.13) 

The logical canditate for Bf".l. m is the direct generali­
zation of (2.13), 

m 

B l ··· m= II Bij on J~"'m' 
i>j=l 

which for N ¥: 1 is taken to be 

m 

(3.2) 

BIN!. m == II BWl on J}.~~ m' (3.3) 
·i> j=1 

By this definition BI·:".l. m is idempotent with an 
eigenspace to the right which is the natural generaliza­
tion of the N = 1 case. The idempotency is proved by 
using the commutativity and idem potency of the 
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BW], on j"[N] , 

m 

= II BW] = m'Y~. m' (3.4) 
i>j=l 

The right eigenspace of B~·:'.], rn is defined by the set 
of X~':'.l. m satisfying the homogeneous equation 

(1 - B}':'.]. m)X~'Y~. m = O. (3.5) 

A necessary and sufficient condition for X~':.]. m to be 
a solution of (3.5) is that it satisfy 

(1 - BW])xF~'~. m = 0, for all i > j = 1,' .. ,m. 

(3.6) 

That it is sufficient follows from the definition of 
Bf-:'.] m' Eq. (3.3). That it is necessary follows from 
the commutativity and idem potency of the Bfj'vl on 
j"[N]. The proof of necessity is by contradiction. 
Assume (3.6) is not satisfied by one of the BW] 
(i < j = 1 ... m), say Bf;;]. Then we have 

[N] -" B[N] [N] _ B[N] ( lIm B[N]) [N] Xl' .. m""" lk Xl ... m - lk '. i; Xl . .. m' 
t>3=1 

by assumption and Eqs. (3.5) and (3.3). But 

B\~tfLB~l;]) = (B[f])2( itL Bff]) 
(i,1* l,k) 

(3.7) 

_ B[NI ( lIm B[i',l) _ lIm B[N] - lk i; - i; 
i>j=l i>j=l 

(i,;*l,k) (3.8) 
such that (3.7) becomes 

[Nl [N] [N] _ [N] [N] _ [N] 
Xl ... m ¥= Blk Xl··· m - . II Bij Xl' .. m - Xl· .. m' ( 

m ) 

t>,=1 

(3.9) 
a contradiction. Thus (3.6) is also necessary. 

Now the solution of 

(3.10) 

is given in momentum space by the set offunctionals,lO 

XWl = {P(p?, p~)Q(p? + p~, Pi , p;)}, (3.11) 

for pep? ,p~) a polynomial restricted by 

Ii + I; < 4N, (3.12) 

where Ii, Ij are the exponents of the two momenta in 
anyone term, while Q is an arbitrary distribution 
restricted to 6'. Thus the solution of (3.6) and there­
fore (3.5) is necessarily of the form 

xf"~'!'m = {P(P~··· P~)Q[C~P~)'P1"'PmJ}, (3.13) 

10 Equation (3.1 I) is the Fourier transform of the results published 
in Ref. 2, p. 9. 

for P(p~ ... p~) a polynomial restricted by (3.12) only 
with i, j running over all momenta and Q again an 
arbitrary tempered distribution. 

Now in the framework of operator theory, the 
projection operator (1 - B~":.]. m) can facilitate the 
derivation of the m-point equation (3.1) for N ¥= 1 
in the same manner as demonstrated for N = 1 in 
Sec. 2. Thus following Eqs. (2.10)-(2.21) we have the 
operator form 

A~'Y~. m == (1 - Bf'Y!. m)J1 °o. m 

~ (1 - lIm B[N])J 
'l,) 1··· m 

i>j=l 

with 

~ {(1 - Bff]) + (1 - Bbi1)Bff] 

+ (1 - B~f]) Bf~'l m~l + ... 

+ (1 - B~~l,m)(. IT BW])}Jloo. m' 
t>J=l 

(3.14) 

(1 - B[f])J1°o. m ~ (1 - B[f])[ IT (J; + ~)JJlk 
,~l ba; 

1*I,k 

~ IT (J j + ~)(1 - B[~l)Jlk 
,~1 oa. 
;*l,k ' 

~ IT (J; + ~)P[N](J1Jk)' (3.15) 
;~l oa. 
;*l,k ' 

where the last step follows by (1.17), such that (3.14) 
becomes 

A~'Y!'m:b IT (J; + ~)P[N](J1J2) 
,~3 oaj 

+ B~f] II (J; + ;:)P[N](J1J3) 

;*1,3 ' 

+ m~']BWl il (J; + ;:)P[N](J1J4) + ... 
;*1,4 ' 

+ IT BW] IT (Jk + ~)p[N](Jm_1Jm). 
i > j~l k~l oak 
;*m-1 (3.16) 

As a consistency check, we see that this result reduces 
to (2.20) for N = l. In addition, it is nonlinear in J 
and its derivatives and therefore nonlinear in S = S 
or S* and its derivative so that in perturbation 
expansion AF1.<;:; (nth order) is determined by all 
solutions of order I < n. The integral equation for 
the m-point function, Eq. (3.1), is to be identified 
with the vacuum of (3.14) yielding 
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with AF/~.m given by (3.16) and 

WI··· m = (J1 ... m)0· 

The general solution is accordingly 

WI ... m = ,W'~. m + X~~? m' 

(3.18) 

with x~·:·~. m a solution of the homogeneous equation. 
The structure of this theory corresponds with the 

N = 1 theory of Sec. 2. Again we have the relation 

Bf~.l. m I = 1 (3.19) 
m.s.(m.S.-I) 

and the mass shell (one leg off the mass shell) ampli­
tudes are again contained completely in the homoge­
neous terms, 

WI' .. m I = xf'~? m I (3.20) m.s.(m.S.-I) m.s.(m.S.-I)· 

Thus by the same argument as for N = 1, the separa­
tion of WI ... m into two parts is necessarily a non­
invariant separation. That is, the invariant XF.l'm are 
restricted to the set 

XF~·!.ml. . = {P(PI'" Pm)b(iPi); 
,IDvanant ,~l 

b(~/i)F(Pl ... Pm) L.s.(m.s.-l} (3.21) 

for P(Pl ... Pm) a polynomial in the invariants formed 
from the momenta (Pl' .. Pm) restricted by (3.12) and 
F(Pt· .. Pm)m.s.(m.s.-l> E 6'. Thus an invariant off 
m.s. separation would allow only the polynomial 
solutions of X~·~·]. m' But this would restrict WI'" m/ms 

to polynomials by Eq. (3.20). Therefore X~·7.J. m is again 
determined up to invariant polynomials as the Lorentz 
invariant completion of )Y']. m' These polynomials 
must then be fixed by appropriate boundary condi­
tions, a question to be discussed in the next section. 

The discussion on diagrammatics for N = 1 will also 
be valid here with N ~ 1. This follows since Jp'](nl 

1··· m 

(nth order) is composed of the same invariant vacuum 
products of currents and their derivatives, but with 
different non invariant coefficients characterized this 
time by the explicit appearence of the superscript [N). 
A typical term, e.g., is 

B[N/ IT (J; + ..i.2....)P[N](J1J
k
)\(nl 

\ J~l ba 10 
j#l.k J 

= B[·Vlm·~/ IT ('J; + E..)JJ>(nl 
\ ,~l 6a 10 

i*!,k J 

+ B[NlDfkV
/\ IT (J i + ;6 ) J1Jkl\(n), (3.22) 

/;1\ a; 0 

with B[Nl some c-number coefficient composed of a 

suitable product of BI;Vl's. But the identification of dia­
grams was all carried out within the vacuum product 
such that the discussion is not altered by the presence of 
different coefficient functions, B[.\'l. The uniqueness 
argument also remains, once boundary conditions are 
chosen to prevent the polynomial solutions of X~.\']. m 

from introducing new diagram topology in the form of 
vertices. Whether or not the boundary-condition 
program can be carried out is another question, and 
will be discussed next. 

Boundary Conditions 

In perturbation expansion the equation to be solved 
is 

(1 - B~·~~. m)wi~) .. m = A~;:~(.n~, 

with the general solution 

wi~) .. m = A~X!(.n~ + X~.vl(n~, 

(3.23) 

(3.24) 

for X~'\Y::: a solution of the homogeneous Eq. (3.5). 
As already discussed, the requirement that wi~). m 

be Lorentz invariant (and symmetric) determines 
X~.v].(::; up to invariant (symmetric) polynomials in 
momentum space satisfying the restriction (3.12). It 
is therefore necessary to introduce boundary condi­
tions (b.c.) in order to determine these polynomials 
and obtain a unique solution. These b.c.'s enable 
finite unique results for theories of the form pr (r > 4), 
but at the expense of having a number of parameters 
that is an increasing function of the order in perturba­
tion expansion. 

We have established the Feynman diagrams as the 
topology of a one-vertex problem to any order of 
the perturbation expansion. Thus the degree of 
divergence of a particular graph in FD can be used 
as a guide indicating the number of "subtractions" 
that must enter in order that the formalism remain 
finite. For pr theories the primitively divergent /11-

point graphs in nth order are given byll 

0< K ~ -4, 
for (3.25) 

K = -/11 + (r - 4)n. 

K is the degree of divergence such that, for K = 0, 1,2, 
etc., the integral is called logarithmically, linearly, 
quadratically, etc., divergent. Thus for each m-point 
function there exists an order n for which a new 
primitive divergence appears in FD theory for pr, 
r > 4. Therefore, the b.c. on li)(n)(Pl ... Pili) must be 
such as to allow subtracted results to appear for 11 

large enough such that ii}n)(PI ... Pm) becomes prim­
itively divergent in FD. That is, for every 111 there 

11 Reference 7, p. 205. 
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exists an N such that for n > N, the b.c. leading such as 
formally to FD, (3.31) 

lim W(n)(PI'" Pm) --+ 0, 
-p/-oo 

(3.26) 

no longer yields finite results. But the only alternative 
IS 

lim (U(n)(PI'" Pm) --+ 0, for some I > 1. (3.27) 
__ p;2-+00 (_ p;)l -

This follows since I < 1 determines the same poly­
nomials as 1= 0; i.e., the requirement that X~'~](;:; 
be the Lorentz-invariant completion of Af·~'](;:; deter­
mines it up to invariant polynomials that must all 
vanish for the high-energy bounds given by I ~ 0. 
The b.c. (3.27) for I ~ 1, on the other hand, deter­
mines the solution up to invariant polynomials which 
are of degree k, in the p? component of anyone 4-
momenta (Pi; i = 1, ... , m), where ° ~ k < 2/, such 
that they still satisfy the bound. Now to fix these 
polynomials it will be necessary to introduce an 
additional b.c. It must further be a bound for some 
finite value of the invariant arguments since the 

lim has already been exhausted. Thus for some 
-])i2-- oo 

point in the phase space spanned by the m four-
vectors (PI, ... , Pm), e.g., 

{Pl" . Pm} --+ {al ... am}, 
where 

pr--+ar (i=1,···,m;ft=0,1,2,3), (3.28) 

W(n)(PI' .. Pm) must be fixed in such a way as to 
determine these polynomials. A sufficient condition 
would be the requirement that these polynomials 
have an lth order zero at this phase space point. 
This is so, since invariant polynomials of degree 
k < 21 in any of the p? (i = I, ... , m) cannot have 
an Ith order zero. For example, a boundary condition 
of this form that uniquely determines the solution 
(i.e., fixes all polynomials of degree k < 21 in p?; 
i = I, ... , m) is 

(3.29) 

for 

lim == lim lim lim lim. 

This is because any invariant polynomial satisfying 
(3.29) must contain the factor (p~ - a~)l, which is of 
degree k = 2/ in p~ violating the high-energy constraint 
(3.27). 

The Y;:) of (3.29) can be reduced to one parameter 
for all orders through some solution of 

00 

Ym = ~ gny;:), (3.30) 
n~O 

where Ym is the measured value of 

W(PI •.. Pm)l(p;}-+(a;)' 

Thus a finite unique solution for w~ n). m' in the case of 
a nonrenormalizable interaction of the form 

Lint = cpr (r > 4), 

is possible in this framework, but at the expense of 
introducing at least one parameter for each point 
function. Thus, since the number of different point 
functions that necessarily enter the theory is an 
increasing function of the order of perturbation, so 
also is the number of parameters required. 

Nothing has really been said about the numerical 
value of the superscript N. By (3.12) it determines the 
degree of polynomial and therefore the number of 
subtractions entering the theory. Since these are an 
increasing function of the order of perturbation, 
calculations to all order would require that N --+ 00. 

But since the number of parameters must increase 
indefinitely with N, the question of existence of 

lim Bf·~··l. m 

J.V-oo 

as a distribution in some space becomes academic, 
For calculations to some finite order, N must be taken 
large enough to accommodate all the subtractions 
necessary to that order. 

Discussion 

In the preceding sections a program has been 
demonstrated that can yield finite results to any given 
order of perturbation expansion for quantum field 
theories, consistent with the claims of Chen. However, 
the price for uniqueness is a number of parameters 
increasing with the order of perturbation. This break­
down of the perturbation expansion does not exclude 
the possible existence of solutions in closed form or 
even some other approximation scheme involving, 
for example, a different parameter of expansion than 
the one chosen here. 

In this regard the work of Giittinger and Pfaffel­
huberl2 is interesting. They have produced a one­
parameter subtraction convention, applicable to 
nonrenormalizable interactions, and yielding finite 
results unique up to infinite series of polynomials (in 
momentum space). In addition, the claim is made 
that these polynomials need not be determined, since 

12 W. Giittinger and E. Pfaffe1huber, University of Munich 
Preprint, 66/562-TH. 660, 1966 (unpublished). 
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they do not contribute to the scattering amplitudes 
on the mass shell. There is an inconsistency in this 
argument, however, when applied to an iterative 
solution based on Born approximation in the context 
of the work presented here. That is, if one assumes 
that to some order of iteration (perturbation), all 
amplitudes including these polynomials are known, 
but only on the m.s., then one does not have enough 
information to generate the next iteration. This follows 
since without knowledge of the off-m.s. amplitudes 
of lower order, one cannot carry out the necessary 
integrals. Thus we have a contradiction and the 
Born term does not determine the higher-order parts. 

4. SUMMARY 

The TI-functional algebra introduced in CF.I. has 
been applied to the derivation of the integral equation 
of Pugh4 without the construction of an interacting 
field. In perturbation expansion a diagram represent­
ation of the integral equation can be constructed so that 
it coincides with that of Feynman-Dyson in the formal 
limit of the unrenormalized solution. This enables a 
physical construction of boundary conditions and a 
completion of the theory at least for the q;3 and q;4 
models. The arguments, however, are general enough 
and can be extended to more complicated renormal­
izable models. This program is also directly general­
izable to the distributions of Chen2 for which no field 
representation has yet been derived. For this extension 
it is further demonstrated that finite unique results 
require a number of parameters that is an increasing 
function of the order of perturbation expansion. 

There are many problems that remain to be solved. 
The situation as it stands with respect to nonrenor­
malizable interactions is not very satisfactory. A 
solution that in principle requires an arbitrarily large 
number of parameters, even though finite and unique, 
cannot be considered meaningful as a theory. How­
ever, it can be argued that this is simply due to an 
expansion in terms of parameters for which no 
expansion exists. There may still be exact solutions, 
but how are they to be found? Now that a perturba­
tion expansion for renormalizable interactions exists 
on a term-by-term basis, the question of its conver­
gence may be intelligently approached. 

The algebra of the II-functions should be generalized 
to higher-spin systems and many-field systems, and 
the finite theory of quantum electrodynamics should 
be completed with respect to the boundary conditions. 
The implicit P-ordering concept must be explored for 
the possible existence of an algorithm for the renor­
malized theory, the analog of the formal expression 
(e- ilI )+ . 
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APPENDIX A: THE Bi; FACTORIZATION 
OF B1 ... m 

Here it will be proved that B1 ... m has the factori­
zation 

m 

B1 .. . m = II Bij on .'F~ ... m' (AI) 
i> j=1 

The restriction to .'F~ ... m comes about through the 
use of relations such as 

(A2) 

which have been proved only on .'F'. The defining 
representation for B1 ... m is given in the text, Eq. (2.2). 

To prove (AI) we note that 

m m 

(1- B1 ··· m) II Bi ; = II Bi ; - B1 .. · m. (A3) 
i> ;=1 i> ;=1 

This is so since 

B1 · .. mBlk = B1 . .. m(Blk /m.s.<m.s.-l», 

(1 s-; I :;e k s-; m), 

= B1 ··. m , (A4) 
by 

B I = 1 lk m.s.<m.s.-O , (AS) 

where m.s. (m.s. - 1) means all legs on the mass 
shell (all legs but one on the mass shell). Now this 
implies 

m 

B1 · .. m II Bi ; = B1 · .. mB12BI3 ... Blk ... Bm-I,m 
i>j=! 

m 

BI ... m II Bi ; = BI ·.· mBlk ... Bm-I,m 
i> j=1 

= B1 ··· mBm-I.m 

= B I ··· m · (A6) 

A useful representation for (1 - B1 ... m) can be 
obtained from a decomposition of the unit distribu­
tion. One starts with 

1 == 0(1) ... oem) = (- )m(K)mLlR(l) ... LlR(m) 

= (- )m(K)mC~Ielke2k" . ekk-1ekk+l ... emk) 

x LlR(l)' .. LlR(m), (A7) 
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for 

and 

!5(i) == !5(Xi - Yi) 

(K)m == KX' ... KXm 

~R(i) == ~R(Xi - Yi)' 

()ik = ()(Xi - xk)· 

Now with the substitution 

(A8) 

~R(i) = ~(i) + ~A(i), i ¢. k, (A9) 

followed by appropriate grouping of terms, we obtain 
m 

1 = (_)m(K)m~{«()lk()2k'" ()kk-l()kk+l'" ()mk) 
k~l 

x (~(1) + ~A(l) ... (~(k - 1) + ~A(k - 1» 

X (~(k + 1) + ~A(k + 1» ... (~(m) + ~A(m»~R(k)}. 
A further regrouping of terms yields 

1 = Bl ... m + (- )m(K)m ~Jc()lk()2k ... ()kk-I 

X ()kk+1 ... ()mk) 'II ~ [(~Ay(~)m-Z-l]~R(k)). (A10) 
l~l (sets) 

Here B l ... m has been identified as a particular 
separation of terms with one inhomogeneous ~R 
and m - 1 homogeneous ~ functions, while 

~ [(~Ay(~)m-l-l] 
sets 

'" 1 [~ (oc) ... ~ (oc) ptrm I! (m _ 1 _ I)! A 1 A I 
(al'" am-l) 

X ~(OCI + 1) ... ~(OCm-l)]' (All) 
for 

(OCI'" OCm-l) = (1,"', k - 1, k + 1,"', m). 

From (AlO) we have the desired representation, 
m m-l 

(1 - Bl ... m) = ~ I I X Zk' (A 12) 
k~ll~l sets 

for 

X Zk = (- )m(K)m()lk 

x ()2k' .. ()kk-l()kk+1 ... ()mk(~Ay(~)m-l-l~R(k). 

Now look at one term .in the triple sum of (AI2) 

Xzm = (- )m(K)m()lm()2m ... ()m-l,m~A(l) ... ~.il) 

x ~(l + 1) .. : ~(m - l)~R(m). (A 13) 

This is an eigenvector to the left of TI lm + TIml = 
1 - B lm , since 

XZm(TI lm + TI ml) 

= ( - )m(K)m()lm()2m ... ()m-l,m 

x f d~l d~2~A(Xl - ~l) ... ~A(l) 
X ~(l + 1) ... ~(m - l)~R(xm - ~m) 

X KhK~J()~l~m~A(~l - Yl)~R(~m - Ym) 

+ ()~mh~A(~m - Ym)~R(~l - yJ}, 

which becomes, after twice integrating by parts, 

Xzm(TIlm + TI ml) 

= (- )m(K)m()!,xm()2m ... ()m-l,m 

X [~A(XI - Yl)~A(2) ... ~A(l) 

X ~(l + 1) ... ~(m - l)~R(xm - Ym)] 

+ (- )m(K)m()x,()Xm()XmX,()2m'" ()m-l,m 

x [~R(XI - Yl)~A(2) ... ~A(l) 

X ~(l + 1)· .. ~(m - l)~A(xm - Ym)] 

= (- )m(K)m()lm()2m ... ()m-l,m 

X [~A(l)" . ~A(l)~(l + 1) ... ~(m - l)~R(m)] 

= Xzm, (A14) 

for ()lm()ml = 0 and ()Im()lm = ()lm' 

In the same manner it follows that 

X lm = Xlm(TIlm + TI ml)(TI 2m + TI m2)· •. (TIlm + TImz) 

= X lm(1 - B1m)(1 - B2m) ... (1 - Bzm). (A1S) 

But this implies 
m 

Xzm IT Bij 
i>j=l 

m 

= X 1m(1 - B1m)(1 - B2m) ... (1 - Blm) IT Bij 
i>j~l 

= 0, 1 ~ 1, (A16) 
by 

m 

IT Bij = Blm IT Bij all 1 = 1, 2, ... , m - 1, 
i>j~l i>j~l 

and 
(1 - Blm)B zm = 0. 

Now, since this analysis can be made for an arbitrary 
term of (AI2) and since I ~ 1 for all terms, we have 

m m m-l m 

(1- B1.·· m) IT Bij =I ~ ~ X 1k IT Bij = 0. 
i > j~l k~1!~l sets i > j~l 

Equations (A3) and (AI7) imply 
m 

IT Bij = B1 .. . m , 
i>j=I 

concluding the proof. 

(A17) 

APPENDIX B: REMARKS ON THE TWO­
POINT FUNCTION 

In this appendix it will be demonstrated that 

B12W12 = 0, (Bl) 

for the case of renormalizable theories. Equation 
(Bl) was first proposed by Pugh,13 but the proof was 
based on w(PIP2)lm.s. = O. This is not enough since, 
for example, (p~ + m2)lm.s. = 0, but is a solution of 
the homogeneous equation and therefore does not 

13 Reference 1, p. 347. 
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satisfy (BI). The proof does follow, however, from the 
stability of the vacuum and single-particle state. 

We have for Bl2W l2 

B l2Wl2 = K"" K""()""",, f d4Yl d
4
Y2[Ll(Xl - Yl)LlR(X2 - h) 

- LlR(Xl - Yl)Ll(x2 - Y2)] . KYIKy.<<I>(AYIAy.)o. 
(B2) 

Integration by parts twice in Yl yields 

Bl2Wl2 = K""K""()""",, 

X f d4Yl d4Y2{KyJLl(xl - Yl)LlR(X2 - Y2) 

- LlR(Xl - Yl)Ll(x2 - Y2)]} . Ky.<<I>(AYIAy.)o 

- ( lim - lim ) K""K""()""",, 
YI0 -+ 00 'YI0-+-OO 

X f daYl d4Y2[Ll(xl - Yl)LlR(X2 - Y2) 

- LlR(Xl - Yl)Ll(x2 - Y2)] 

X ~Ky.<<I>(AYIAy.)o, 
which equals 

Bl2W l 2 = K""K""()""",, f d4
Y2Ll(X2 - h)KII .(<I>(A""Ay.)o 

- K""K",.()""",. 

x f daYl d4Y2Ll(Xl - Yl)LlR(X2 - Y2)a;:.Ky• 

x <{a~~tAY.IYlo=O - Ay.a~~IYlo=_OO})o 

- K""K""()""",, f daYl d
4
Y2Ll(Xl - YI) 

X Ll(X2 - Y2)~ Ky.<Ay.a~~)oIYIO=_OO 

= K""Kx.()X1X. f d4
h[Ll(X2 - Y2)KY2(<I>(AxIAy.)o 

- LlR(X2 - h)' «a~~tJy. - Jy.a~~)o 
- Ll(X2 - Y2)(J y.a~~)o]. (B3) 

The last term of (B3) vanishes by the stability of the 
single-particle state, since 

f d4Y2Ll(X2 - Y2) (01 Jy• = (01 (a~~ - a~:t) = 0. (B4) 

This leaves the first two terms which, after integration 
by parts in the first term and substitution of fields for 
the integral over the current in the second term, 
becomes 

~ut «a~~tA"'l - AXla~~)O = ([ax., AX,])o by (B4) for 
a~n = ax. Further, only the single-particle state con­
tributes to a sum over intermediate states 

such that 

(01 ax,A",.10) = (01 a"" 11)(11 Ax210) 

= (01 a"" 11)(11 ax. 10), 

and (B5) becomes 

Bl2Wl2 = KX,Kx.()""x.{ - [a",., a",,] - iLl(X2 - Xl) 

(B6) 

+ ([ax/ax. - ax.) - (ax. - aX2 )a X ,])o = 0. (B7) 

The result was proved independently by Wilner14 in 
momentum space using the assumption of a spectrum 
gap between the single particle state and continuum 
for the spectral representation of the 2-point func­
tion. There it becomes clear that (BI) holds, because 
of the 2nd-order zero on the mass shell as expressed in 
the 2-point boundary condition, Eq. (2.36). 

14 M. Wilner (private communication). 
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The method of an extended canonical point transformation is used to reformulate the singular repul­
sions in a classical hard-sphere gas as equivalent velocity-dependent interactions. The approach provides 
a Hamiltonian in which the repulsions appear as nonlocal potential interactions between the particles and 
may therefore be treated within any of the conventional perturbation methods of many-body analysis. 
Application of the technique to obtain a kinetic equation for a hard-sphere gas is outlined. 

1. INTRODUCTION AND MOTIVATION 

Considerable difficulties arise from attempts to 
apply any of the usual techniques of analysis in 
describing the effects of the strong short-ranged 
repulsions between the particles of a classical many­
body system. If these repulsive forces are idealized 
(and mathematically simplified) by assuming that the 
individual particles are structureless elastic spheres of 
diameter (1, the interactions are too singular to permit 
any meaningful perturbation approximation. More­
over, for a van der Waals-type system the combination 
of weak long-ranged attractions and tn.e hard-core 
repulsions appears to be inherently un treatable within 
any formal expansion type of development. Conse­
quently, one usually finds that a comparatively naive 
approach based upon some self-consistent insight into 
a particular formalism results in the best possible 
analysis. 

The present article summarizes the efforts of the 
author to provide a comprehensive method which may 
be employed to describe the repulsive interactions 
within any of the conventional techniques of many­
body physics. The central idea is to reduce the effects 
of the hard cores into equivalent but more regular 
potential interactions while retaining the essential 
Hamiltonian description of the particle dynamics. 
Following a suggestion of Gross, this is accom­
plished by performing an extended canonical point 
transformation upon the dynamical coordinates so as 
to express the repulsions as equivalent velocity­
dependent forces between the individual particles. 
Such interactions are well known in classical me­
chanics and can be studied within any statistical­
mechanical formalism without difficulty. The analysis 
in fact becomes a novel exercise in determining the 

* The research reported in this paper is based upon a Ph.D. 
thesis presented at Brandeis University, Waltham, Massachusetts 
(1966) and supported in part by the Office of Naval Research under 
Contract NONR 1677-04. 

t The author is currently NBS-NRC Postdoctoral Associate at 
the National Bureau of Standards, Washington, D.C., 20234. 

properties of a many-.body system whose Hamiltonian 
contains a simple momentum-dependent potential. 

The approach is developed by recognizing that the 
hard-core repulsions imply the existence of certain 
excluded-volume regions in the coordinate phase 
space by prohibiting any two particles from approach­
ing closer than a distance (1 apart. Such restrictions 
are essentially kinematic (holomorphic) constraints 
upon the relative physical motions of the individual 
particles,l and can be eliminated by making the 
coordinate representation dependent upon the relative 
positions of the particles. In order that this modifica­
tion of the coordinates leaves the description of the 
particle dynamics unaltered, the conjugate-momentum 
variables must be correspondingly modified. This is 
accomplished by means of the extended point trans­
formation of the coordinates and momenta. It is the 
spatial dependence of the canonical momenta which 
reformulates the kinematics constraints into the simple 
nonlocal velocity-dependent interactions between the 
particles. 2 

This technique of reducing singular coordinate 
repulsions between the particles of a many-body 
system into more regular momentum-dependent 
potential interactions was first proposed by Bohm and 
Gross3 and developed by Eger and Gross4- 6 to study 
the equilibrium properties of a system composed of 
hard-core bosons. They were able to effect a re­
formulation of the hard-sphere scattering for binary 

1 This is analo/lous to the restriction which F. Dyson [Phys. Rev. 
102, 1217 (1956)] noted in attempting to distinguish between 
kinematical and dynamical interactions of a magnetic-spin system 
where a form of kinematic constraint "arises from the fact that more 
than 2S units of reversed spin cannot be attached to the same atom 
simultaneously ... there is therefore a certain statistical hindrance 
to any dense packing of spin waves within a region." 

2 Bohm and Pines have pointed out that it is such a canonical 
reformulation of the 2N individual dynamical coordinates into the 
coll~~tive-coordinate representation which in effect replaces 
positIOn-dependent potentials by equivalent momentum-dependent 
interactions. See D. Pines and D. Bohm, Phys. Rev. 85, 338 (1952). 
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3 D. Bohm and E. P. Gross (unpublished). See Refs. 4-6. 
• M. Eger and E. P. Gross, Ann. Phys. (N.Y.) 24,63 (1963). 
5 M. Eger and E. P. Gross, Nuovo Cimento 34, 1225 (1964). 
6 M. Eger and E. P. Gross, J. Math. Phys. 7, 578 (1966). 
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collisions that in fact reproduces the usual phase-shift 
analysis, by choosing the transformation with regard 
to a metric-potential term which appears as the result 
of noncommutativity of the quantum-mechanical 
momentum and position operators. 7 A similar ap­
proach has been put forth by Luban,8 who was able 
to explicitly construct an operator defined over all 
relative distances between two particles which plays 
the role of a Hamiltonian such that the subsequent 
eigenvalue problem has as its only solutions precisely 
the eigenfunctions for two hard spheres. Both of these 
developments clearly exhibit the nonlocal aspects of 
hard-core repulsions in the wavelike characterization 
of the quantum particles and unlike the pseudo­
potential method9 provide for a completely equivalent 
but more regular (Fourier analyzable) Hermitian 
Hamiltonian over the entire phase space. 

In this paper a similar analysis is completed for a 
classical hard-particle system. A general form of the 
exact transformation is first obtained for the two-body 
problem where the method is easily shown to repro­
duce the details of the classical hard-sphere scattering. 
Generalizing this procedure to the full many-body 
system, it is noted that the appropriate transformation 
involves determining the Jacobian of the coordinate 
transformation relating all N - 1 relative positions of 
the particles. Since the reduction of any such a form 
is not practical (let alone possible), the transformation 
is taken to be linear in the conjugate momentum. The 
result is a Hamiltonian which retains many of the 
features of a point-particle form. Exhibited in this 
manner, it is immediately seen that the real advantage 
of thi~ canonical reformulation permits the strong 
repulSIOns to be studied within any of the standard 
perturbation formalisms. By assuming that the colli­
sions may be decomposed into a simple superposition 
of binary encounters, the virial expansion is easily 
reproduced. To illustrate application of the approach, 
the properties of a van der Waals system are discussed 
by developing a mean-field approximation valid for 
both the hard-core repulsions as well as the weaker 
long-ranged attractions. A description of the ap­
proach to equilibrium for such a hard-sphere gas is 
outlined using Zwanzig's projection-operator for­
malism. 

7 An excellent exposition on the canonical elimination of the hard 
~.ore for quantum par~~c1es is contained in an article by J. S. Bell, 

Many-Body Problem In Bergell Lectures (W. A. Benjamin, Co., 
Inc., New York, 1961). In the quantum-mechanical problem, the 
nonlocal aspect of the hard-core. repulsions is immediately obvious 
due to the wavelIke characterizatIon of the particles. For the classical 
scattering of two hard spheres the nonlocal nature of the interaction 
IS by no means as apparent. 

8 M. Luban, Phys. Rev. 138, AI028 (1965). 
• See K. Huang, Statistical Mechanics (John Wiley & Sons, Inc., 

New York, 1963). 

2. TWO-PARTICLE TRANSFORMATION 

The phase-plane motion of two intersecting hard­
core particles serves to outline the qualitative behavior 
of the scattering process and to motivate the basic 
features of the transformation. For identical but 
distinguishable rigid spheres of mass m and diameter 
(J', the scattering process is described in the relative 
coordinate system (r = r1 - r2, P = PI - P2, f.t re­
duced mass) by the Hamiltonian 

H(r, p) = (1/2f.t)p2 + VCr). (2.1) 

The interaction potential VCr) is assumed to depend 
only upon the magnitude of the relative coordinate 
Irl. The geometric constraint that no two particles 
occupy the same region in space is expressed by 
restricting the domain (of definition) of r such that 
r ~ (J' and excluding the regiQn 0 ::::;; r ::::;; (J'. For un­
bounded physical motions, the incident particle is 
scattered symmetrically about the apse of the orbit 
passing a distance ro from the scattering center. When 
the distance of closest approach is greater than the 
size of the hard-core ro ~ (J' the particle motion is 
reversed continuously at the turning point of the orbit 
as the radial momentum vanishes identically Pr(ro) = 
O. If, however, the particle strikes the scattering center 
ro < (J' in an elastic collision, the motion undergoes 
an abrupt reversal of direction, experiencing a dis­
continuous change in the radial momentum by an 
amount I:lpr = -2pr (r = (J'+). 

The restriction of the physical motion to the region 
r ~ a may be eliminated by simply choosing a new 
relative coordinate variable R defined over all values 
IRI ~ 0 and expressing r as a continuous function of 
R. The simple form r = S(R) = R + a serves to 
illustrate the technique. If, however, the transforma­
tion is to leave the description of the motion unaltered, 
it is necessary to effect a compensating change in the 
conjugate-momentum variable P so that the new 
momentum P possesses a zero at the value of R 
corresponding to the turning point of the motion, 
PR(rO) = O. 

This change of variables from (r, p) to (R, P) can be 
made rigorous by means of a simple canonical trans­
formation, the invariance of the Hamiltonian formal­
ism preserving the dynamical description of the 
motion.1° From the generator of such transformations 
~(p, R), specification of the relationship r = S(R) 
dictates the functional form of 

a~(p, R)/ap = r = S(R). (2.2) 

10 See any standard text on classical mechanics such as H. 
GoldsteIn, Classical Mechanics (Addison-Wesley Pub!. Co., Reading, 
Mass., 1950). 
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It follows by integrating with respect to p that 

~(p, R) = P • S(R) + ~o(R). (2.3) 

The conjugate momentum P is then determined as a 
function of the variables (p, R) as 

P = o~(p, R) = p. oS(R) . (2.4) 
oR oR 

[A simple gauge transformation has been used to 
eliminate the additional term o~o(R)/oR which arises 
as a constant of integration.] 

Since the scattering depends only upon the magni­
tude of the relative coordinate " one may choose 
S(R) to be a spherically symmetric function. The 
angular coordinates (0,1» then undergo the simple 
identity transformation to (e, <1» provided S(R) has 
the components {S(R), e, <I>}. From the generator of 
the transformation 

~(p, R) = PrS(R) + poe + p",<I>, (2.5) 

it follows that the conjugate momenta are given by 

p = o\J(p, R) 
oR ' 

(2.6a) 

(2.6b) 

corresponding to the inverse coordinate transforma­
tion 

r = o~(p, R)/op, (2.7a) 

(

'\ (S(R») 
OJ e. 
1> <I> 

(2.7b) 

If the coordinate R is to be defined over all R ~ 0, 
the transformation must be chosen such that the 
origin R = 0 corresponds to the point' = G. This is 
achieved by setting S(R = 0) = G. The conjugate 
radial momentum PR will then exhibit a true turning 
point for some value Ro > 0 c<?rresponding to a simple 
scattering about '0 > G or must vanish identically at 
R = O. From the identity PR = Pr[oS(R)/oR] it 
follows that S'(O) = O. 

For asymptotically large values of the radial co­
ordinate' -+ 00, the scattering remains unaffected by 
the presence of the hard core, suggesting that S(R) 
reduces to the simple identity transform for large R 

S(R» 0) = R, 

oS(R» O)/oR = 1. 

(2.8) 

(2.9) 

Combining the limiting values for large and small 
values of R, the function S(R) is seen to be a simple 
monotonically increasing function of R satisfying the 
conditions 

(c-l) S(R = 0) = G, 

(c-2) S'(R = 0) = 0, 

(c-3) S(R» 0) = R, 

(c-4) S'(R» 0) = 1. 

Within the requirement that the particular form of the 
transformation be chosen to preserve the description 
of the individual scattering events, any further speci­
fication of the form of S(R) is unnecessary (see 
Appendix). 

These properties of the function S(R) can be shown 
to be consistent with those obtained directly from 
the equations of motion. Since the scattering Hamil­
tonian in radial coordinates 

( ) 1[2 12 1 2J H r, p = 2- Pr + --; Po + 2 • 2 lJ PrJ> + v(, > G) 
f.l , , sm u 

(2.10) 

remains invariant under a canonical change of vari­
ables, a direct substitution for (r, p) in terms of 
(R, P) transforms H(r, p) into 

H(R, P) = 2~[ (:c;S + (S~;S + (S s~: en 
+ V(S(R». (2.11) 

Instead of attempting a complete description of the 
scattering in terms of quadratures, it is sufficient to 
consider the dynamics of the equivalentone-dimen­
sional reduction by expressing the radial momentum 
PR as a function of the total energy (H = constant E) 

PR = oS(R) (2f.l{E - V(S(R»} 
oR 

- [(~0J + (S~: enr (2.12) 

The term [(P 0/ S(R»2 + (P <1>/ S sin e)2] is the modified 
centrifugal potential barrier which scatters the incident 
particle about a (continouus) turning point at the 
zero of the radical. If the radial kinetic energy is 
sufficient to overcome this finite centrifugal barrier, 
the incident particle is turned around at the origin 
R = 0 by requiring that oS(R = O)/oR vanish iden­
tically.l1 

From the properties of S(R) it is seen that the 
transformed static potential V(S(R» remains unaltered 
at the end points, = G and, -+ 00, while for the 

11 Unlike the usual centrifugal barrier which diverges as r 2 at 
the origin (r = 0), the modified form [S(R)]-2 is finite at R = O. 
The kinetic energy, however, remains bounded by requiring that 
[P R(R)/ S(R)] be finite everywhere. 
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intermediate values of the radial coordinate r = 
S(R) < R, the potential is altered by the smearing olit 
of the hard-core repulsion over the entire space. In the 
limit of a vanishingly small core size a - 0, these 
results conveniently reproduce the usual expressions 
for radial scattering as S(R) reduces to the identity 
transformation S(R) = R. 

3. MANY-PARTICLE TRANSFORMED 
HAMILTONIAN 

The analysis of the previous section clearly demon­
strates that it is possible to eliminate the geometric 
restriction on the relative coordinate r 2: a for the 
two-particle scattering Hamiltonian through a canoni­
cal reformulation of the dynamical variables. Through 
a generalization of this technique one can effect a 
similar transformation for a system composed of N 
such particles which will eliminate the (N - 1) 
constraints from the many-body Hamiltonian 

1 NAN 
H = - LP; + - L Veri; > a). (3.1) 

2m i~l 2;*; 

However, as this involves the simultaneous knowledge 
of the relative positions between all N particles, it is 
not possible to explicitly construct the generator ~N 
of any such transformation. Instead (having exhibited 
that such a reformulation exists for any two particles), 
it is asserted that for the set of dynamical variables 

r = {rl' r2 ,"', rN}, P = {PI' P2,"', PN}, 

all r;; 2: a, there exists a transformation ~N(P, R) to 
the set 

R = {RI' R2, "', RN }, P = {PI' P 2,'" ,PN } 

3 ~N(P, R) 3 ~N:rr, p] => [R(r), per, p)], 

where ~N is to be chosen from the full canonical group 
so as to preserve the description of the individual 
scattering events. The most general such transforma­
tion possible will then relate the variables as 

Ri = Ri(r l , r2, ... ,rs), 

Pi = Pi(rl, r2,"', r.v, PI' P2"", P.v), 

for which it is immediately apparent that no manage­
able algebraic manipulation can be performed. It is 
therefore necessary to impose certain realistic restric­
tions upon ~.\j in order to obtain a tractable form. For 
this purpose, it is assumed that the transformation: 

(i) reduces to the simple identity form in the limit 
of point-particles, the hard core vanishing identically 
(a = 0), 

(ii) depends only upon the relative coordinates 
between the particles (translational invariance), and 

(iii) relates the momenta P linearly with p. 

This can be achieved by a generator of the form 

N 

~N(P, R) = L Pi' Si(R, a), (3.2) 
i=l 

with 
Si(R, a = 0) = Ri , (3.3) 

since 

(3.4) 

(3.5) 

Under such a canonical transformation, the original 
Hamiltonian H(r, p) becomes 

~N:H(r, p):::> H(R, P) == Je(p, R), (3.6) 
where 

Je(P, R) = ~ ~ P;A;;(R)P; + ~ !V(ij). 
2m i.; 2i*; 

The modified potential interactions have been denoted 
by 

V(ij) = V(ISi(R) - S;(R)I). (3.7) 
The dyadic 

Ai;(R) = ~(OSi )-I(OS;)-1 (3.8) 
a-loRa, oRa, 

is a spatially-dependent quantity which by coupling 
the various components of the different particle 
momenta gives rise to the velocity-dependent inter­
actions which prohibit particle motions into regions 
of ri ; < a. 

If the system is translationally invariant, the re­
pulsive interactions can be separated from the usual 
kinetic-energy terms [(112m) L P;)] by setting 

Aij(R) = /jij + aGi;CR), (3.9) 

where /ji; defines the Kronecker delta (unit dyadic). 
The metric Gi;(R) forms a 3N X 3N matrix whose 
elements depend upon the relative positions of all N 
particles in the system. If only pairwise interactions 
occur (binary collisions), Gi;CR) will depend upon 
relative coordinate R i; only. 

Expressed in this manner, the transformed Hamil­
tonian 

1 N 2 a N A _. 
Je(P, R) = - L Pi + - ! P;GilR)P; + - ! Vel)~ 

2mi~1 2mi*; 2i*; 
(3.10) 

closely resembles the usual point-particle form-the 
quadratic dependence upon the momenta being a 
characteristic of the linear point transformation. 
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Although it contains momentum-dependent inter­
actions (L PiGijPj ) in addition to the modified po­
tential term, H is no longer restricted by the set of 
N - 1 constraints (all rij > a). 

Associated with the general transformation which 
carries the 2N dynamical variables (r, p) into the set 
(R, P) is the Jacobian 

oCR P) lOR/or oR/op I 
J == oCr: p) = det oP/or oP/op' (3.11) 

The nonvanishing of this functional determinant is 
both the necessary and sufficient condition that the 
mapping be unique and reversible. By taking the 
transformation from the full canonical group so as to 
preserve the properties of the Hamiltonian formalism 
insures that this Jacobian is identically unity. Further­
more, since any canonical transformation leaves the 
extent in the phase space an (integral) invariant 
quantity 

f dr f dp =? f dR f dP[o(r, p)/o(R, P)] = J dR J dP, 

the average of a physical observable determined over 
an appropriate distribution function p(H) remains 
unaltered 

f dr f dpp(H(r, p» =? f dR f dPp(H(R, P». (3.12) 

By the particular choice 

~.v: (r, p) =? {R(r), per, p)}, 

it follows from the group property of the transforma­
tion 

(r, p) =? (R, p) =? {R(r), per, p)} 

that the Jacobian then obeys a product law 

J = det oR/or. det oP/op. 

Because of this, the integral of the canonical distri­
bution function p = e-f3H over the phase space can be 
written as 

f dR f dpJR ' p(Je(R, p». 
This allows the Jacobian of the coordinate transforma­
tion 

JR = oCr, p)/o(R, p) 

to be interpreted (in the manner of Kirkwood) as an 
equivalent "temperature-dependent configurational 
potential energy" 

(}(R) = -fl-1 10gJR (R). (3.13) 

(A further discussion of this property is provided in 
Sec. 4.) 

4. STATISTICAL MECHANICS OF VELOCITY­
DEPENDENT INTERACTIONS 

To provide further motivation for this replacement 
of the hard-core repulsions by equivalent momentum­
dependent interactions, consider the properties of an 
N-particle system with the Hamiltonian 

3N 

Je = L PaAavCR)pv . ( 4.1) 
a,v 

[May,12 noting that velocity-dependent interactions 
are often used in nuclear physics to simulate the effects 
of nuclear forces, has pointed out that "it is quite 
reasonable to expect a certain similarity between the 
velocity-dependent potential and the hard-core re­
pulsions" between the particles of a many-body 
system. Postulating a Hamiltonian of the form Eq. 
(4.1), he considered the partition function and 
developed the cluster expansion for such a system.] 

Because this Hamiltonian is quadratic in the mo­
mentum, it follows immediately from the classical 
equipartition theorem 

j3N 0 \ 3N 
(Je)p = \ ~ Py OPy Je~ = 2fl ' (4.2) 

that the energy is simply 

E = ikT (fl = l/kT). 

The specific heat Cv = ik is therefore independent 
of the temperature and thus identical to that of a 
collection of N simple noninteracting hard particles. 

The detailed statistical properties of the system 
may be obtained from the N-particle distribution 
function p(Je). Preforming the 3N-fold integration 
over the momentum phase space13 determines the 
spatial-distribution function 

peR) = J dpe-PJe(P,R) (4.3) 

= (7T/fl)~N[det A(R)]-!. (4.4) 

Exponentiating the det~ form, it is seen that the hard­
core repulsions give rise to a potential of average 
force for whic.h the interaction energy is 

(}(R) = -(l/2fl) log det A(R). (4.5) 

12 R. May, Nuc1. Phys. 62,177 (1965). 
13 H can be expressed as the sum of squares by a simple rotation 

of the momentum space, thereby reducing the integral to the 
product-independent integrals 

I =f+OO dPI ... fdPN exp (-i PiAi;P;) 
-00 ij 

.v 1+00 .v 
= II dX n exp (-!a~x~) = II (27T/an )', 

n=l _00 n=l 

with ala • •.. aN = det A, and hence the identity. 
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[Compare this result with Eq. (3.14) of Sec. 3.] By 
developing a formal expansion for the log det A it is 
possible to represent this potential energy as the sum 
of individual interactions between clusters of part i­
cles.14 

The partition function Z is found by carrying out 
the remaining integrations over the coordinate space 

Z =jdRjdPe-PJe(R,P) = (7T/{J)!Sj dR . 
[det A(R)]t 

(4.6) 

The resulting configurational integral is seen to be 
independent of the temperature-a property unique 
to the excluded volume regions of a collection of 
hard particles. Since the actual evaluation of this 
configurational integral is not possible, it is necessary 
to resort to the usual procedure of decomposing the 
integrand into irreducible cluster diagrams. In fact, 
noting that the integrand can be expressed as the 
Jacobian of the coordinate transformation 

j j j 
N o(r .. ) 

dRJ R = dR1 '" dRN II -'-' , 
i*j o(Rij) 

(4.7) 

the standard results for the virial coefficients of a 
hard-sphere gas are easily reproduced.12,14 

5. APPLICATION TO A VAN DER WAALS GAS 

The previous reduction of the hard-core repulsions 
into simple momentum-dependent interactions served 
only to postpone the actual analysis of the many-body 
problem. However, in doing so, this approach provides 
an equivalent Hamiltonian in which the singular 
repulsions may be treated as simple interactions 
between the particles rather than kinematic constraints 
upon their relative motions. This is especially useful 
in studying the properties of a classical van der Waals 
system since it permits the strong repulsion to be 
described in the same manner as the weaker long­
ranged attractions. 

For example, a standard procedure in many-body 
analysis is to replace the direct interactions between 
the particles by an effective potential obtained in 
some mean-field approximation. To lowest order, 
this procedure requires only finding the average value 
of the direct interparticle potential VCrij) normalized 
over the entire volume n 

Vo = o-J drV(r). 

(Tn the collective coordinate representation this is 
equivalent to determining the small wavenumber k 

14 M. J. Cooper, Brandeis University thesis, 1966 (unpublished). 

behavior of the Fourier transform of the potential.) 
But the average value of such a pathological inter­
action as the hard core VCr < 0') --+- 00, VCr> 0') = 0 
does not exist and therefore certain obvious difficulties 
arise,l5 However, as the individual elements of the 
matrix G i ; in effect represent the repulsive interactions 
between the particle pair i-j, a mean-field type of 
approximation can be easily carried out for the hard­
core interactions. Replacing each G i ; by its average 
value, 

Gij R::i Go = o-J dRGijCR) R::i t:../O, t:.. = !7T0'3, 

(5.1) 

simplifies the corresponding A matrix to the form 

I 1 Go Go Go 

Go Go Go 

(5.2) 

with eigenvalues gl ... gN' 

gl = 1 + (N - l)Go, 

g2 = g3 = ... = gN = 1 - Go· 

Relating the det of a matrix to its eigenvalues 
(det G = IIi gi) it follows that the configurational po­
tential energy Eq. (4.5) in such an approximation is 

{) = C2{J)-110g det (1 - O'G) 

R::i C2{J)-1[log(1- ~) + (N -l)log(1-t:../O)} 

(5.3) 

This is the usual description for the excluded-volume 
effect in a van der Waals-type gas in which each 
particle decreases the total accessible volume by 
exactly its own size. 

Using this equivalent representation for the hard­
core repulsions it is also possible to attempt a detailed 
calculation of the dynamical behavior for a hard-core 
gas. With the effects of the collisions reduced to the 
momentum-dependent interactions between the parti­
cles, one may simply proceed within the usual per­
turbation formalisms instead of constructing an 
ad hoc collision term based upon arguments of 

15 In the collective coordinate representation, J. Percus and G. 
Yevick [phys. Rev. 138, AI028 (1965)] have shown that the hard­
core repulsions can be replaced by an "equivalent potential whose 
precise value depends upon the approximation used for the long­
ranged forces." 
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continuing molecular chaos of forgetful collisions. 
The problem of doing so, however, is somewhat more 
complicated because the interactions are both spatially 
and velocity dependent. 

The temporal evolution of the phase-space distri­
bution function p(r, p, t) is conveniently summarized 
in the single Liouville equation 

i(op/ot) = Cp, (5.4) 

where the Liouville operator C is obtained from the 
Poisson bracket with the Hamiltonian 

C = i{Je, } = i(oJe • ~ _ oJe.~). (5.5) 
op oR oR op 

If only binary collisions occur between the particles, 
the total Hamiltonian is of the form of Eq. (4.1), 
where the elements Gij are functions of the individual 
Rij only. The corresponding Liouville operator thus 
consists of the sum of an unperturbed term 

N a 
Co = -i~Pi·-

i=l oRi 
(5.6) 

plus terms arising from the direct potential inter­
actions 

through direct collisions, this equation becomes 

oP~' t) = -a2fdT~Cae-iT(1-(j')LCaP(P, t - T). 

(5.11) 

For very short collision intervals, in the long time 
t ~ 00 this may be reduced to a master equation of 
Markoffiian form (p "" e-I't), 

op(p, T)/oT = -Cp(p, T), (5.12) 

C = loo dT~ Cae-iT!:. Ca, (5.13) 

where the collision operator consists of two termsY 
For particles interacting through both weak attrac­

tions and hard-core repulsions, the noncommutativity 
of the various parts of the perturbed Liouville operator 
give rise to an integro-differential equation preventing 
any easy solution for pep, t). However, a kinetic 
equation for such a van der Waals system can be 
obtained in which the effects of the collisions are 
described by the velocity-dependent interactions.l4,18 

APPENDIX A: PHYSICAL FORM OF TWO­
BODY TRANSFORMATION 

(5.7) It has been shown that the conditions on S(R) are 

and the effects of the momentum-dependent inter­
actions 

aCa = iaIp;. oG(R;j). Pi(~ -~) 
i*j oR; OPt 0Pi 

a 
- 2p;G(R;i) -. (5.8) 

oR i 

The coupling of the strong repulsions and the potential 
interactions are observed in the noncommutativity of 
the various parts of the perturbed Liouville operator, 
bC = ACv + aCa • 

For a spatially homogeneous system, the momen­
tum-space distribution function pep, t) has been 
shown by Zwanzig16 to obey a master equation of the 
form 

:t pep, t) = - f dTJ(,(T, A, a)p(p, t - T), (5.9) 

where the kernel J(, is the projection of the perturbed 
Liouville operator over the entire coordinate space 

J(, = dN f dRl .. J dRNbC(R, p) == ~. be. (5.10) 

In the absence of any weak interactions A = 0, 
when the only interactions between the particles occur 

16 R. Zwanzig, J. Chern. Phys. 33, 1338 (1960). 

sufficient to insure that the form of the coordinate 
transformation preserve the mechanical description 
of the two-particle scattering. Since the canonical 
nature of the transformation leaves the statistical 
properties of the system unaltered, it is not possible 
to attempt any variational procedure to further deter­
mine S(R). Instead, physical considerations must be 
used to motivate a particular choice within the full 
canonical group. For example, Eger and Gross,4-6 
in using this method to eliminate the difficulties 
associated with the repulsive interactions in a system 
of bosons, chose the transformation so as to enable 
one to playoff the various types of interactions in the 
system, thereby simplifying its description. 

Lacking any such criteria for a dilute system of 
hard-sphere particles, for the purpose of illustration, 
we choose the two-particle transformation 

r = S(R) = R + ae-R /a
• 

17 Because the interactions depend upon both the action and 
angle variables, the collision operator thus obtained is in general a 
complex quantity. Consequently, the approach to equilibrium will 
not necessarily be strictly monotonic but will tend to oscillate. A 
similar result was found by I. Prigogine et al. [Non-Equilibrium 
Statistica.' Mechanics (John Wiley & Sons, Inc., New York, 1962)] 
for a lattIce system of very strongly interacting particles. 

18 L. deSo~rino, Can. J. Phys. 45, 363 (1967) has recently pro­
posed a kmetlc equatIOn for a van der Waals gas in which "just 
before a collision the correlation between two particles is due 
exclusively to the decrease of the volume of the phase space due to 
the hard cores." 
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This form not only satisfies the boundary conditions 
on S(R) but in the limit of a vanishing hard core 
(] __ 0 reduces to the simple identity r = S(R, (] = 0) = 
R. It represents a physically satisfactory transforma­
tion in that it falls off rapidly, reducing to r ~ Rafter 
several hard-core radii, without the introduction of 
any arbitrary cutoff. The Jacobian associated with the 
coordinate transformation forms an equivalent po­
tential 

which is bounded below and vanishes for large values 

JOURNAL OF MATHEMATICAL PHYSICS 

of R such that its integral Q-1 S dRffR exists and is 
finite. It therefore satisfies the necessary and sufficient 
conditions on the pair potential that a stable con­
figuration exists for the many-body system. 19 
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When only a few partial waves are substantially phase shifted and yet many partial waves are slightly 
phase shifted, it is p~ssible to use the direct Born approximation, provided that one projects out the 
m~ccurate loweryartlal.waves and replaces t~em by accural.e theoretical or phenomenological phase 
sh.lfts. V>(e test this techmque for ce~tral pot~ntlals with two different well strengths, i.e., one which will 
f~11 t? bl~d the ISwave, and on~ whlc~ can bmd the.lS state. We compare numerically generated angular 
dlstnbutlons and total cross sections with those obtamed from a modified form of the direct Born approxi­
~ation .. The tech!1ique :-V0uld be useful for weak forces, e.g., the nucleon-nucleon and electron-atom 
mteractlOns, but mapphcable for strong forces, e.g., atom-atom interaction. 

1. INTRODUCTION 

In the analysis of elastic scattering of a particle 
by a central potential, one sometimes finds that the 
first few partial waves experience substantial phase 
shifts, whereas the higher partial waves are only 
slightly affected. In the case of a weak central potential 
which gives rise to no bound states, or at most one 
bound state, the S wave alone undergoes a major 
phase shift. In such circumstances the scattering 
amplitude as calculated by the Born approximation is 
quite reliable for all the partial waves, except the first 
few-say the Sand P waves. When this occurs, it 
seems possible to adapt the direct Born approximation 
which is so convenient. The modification consists in 
projecting out the lower partial-wave components 
(say the I = 0 and 1) from the closed-form expression 
for the Born elastic-scattering amplitude and replacing 
them by accurate components. To determine the 
accurate scattering amplitude we can use the values of 
phase shifts of the corresponding partial waves, 

* Supported in part by U.S.A.F. Office of Scientific Research. 

determined either experimentally or by some theoret­
ical calculation. Thus we obtain the modified Born 
elastic-scattering amplitude in terms of usual Born 
amplitude, a few subtractive terms representing the 
lower partial-wave components of the Born amplitude, 
and a few additive terms representing the exact 
amplitude for the lower partial waves. The correction 
terms are important only in the low-energy region; 
in the high-energy region the total direct Born ampli­
tude should become dominant. 1 

If for a scattering problem there is not a sufficient 
amount of differential cross-section data available, or 
if the experimental errors involved in obtaining the 
differential cross sections are moderately large, a 
phase-shift analysis may greatly reduce the reliability 
of the data. In such cases the comparison of theoretical 
and experimental results may be more meaningful in 
terms of differential cross sections where the modified 
Born approach is very convenient. Powell and 

1 N. F. Mott and H. S. W. Massey, The Theory of Atomic Collisions 
(Oxford University Press, London, 1965), 3rd ed., Chap. V. 
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determined either experimentally or by some theoret­
ical calculation. Thus we obtain the modified Born 
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amplitude for the lower partial waves. The correction 
terms are important only in the low-energy region; 
in the high-energy region the total direct Born ampli­
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Crasemann2 have discussed a similar approach, one 
which treats the first one or two partial waves by 
other methods, when the Born approximation is 
inapplicable to them because of their large phase 
shifts. 

2. MATHEMATICAL FORMULATION 

The exact scattering amplitude, in terms of partial­
wave phase shifts, is given by 

00 

ieeE, e) = ! (21 + l)ie,I(E)Plcos e), (2.1) 
I~O 

where 

Substituting (3.5) into (3.6), we get 

iR(E, e) = IX/(I + K2). 

Its partial-wave projection is 

fB,I(E) = (IX/2k2)QI[1 + (1/2k2»), 

(3.3) 

(3.4) 

where QI(Z) is the Legendre function of the second 
kind. In the case under consideration here, the 
correction to the first two lower partial waves is 
sufficient. As a matter of fact, the major contribution 
to the correction term comes from the S wave. For 
such as the Sand S-P cases, the modified Born 
amplitude is written as 

N 

The Born scattering amplitude may also be placed in fMB(E, e) = fB(E, e) + I (21 + I) 
the form I~O 

00 

fB(E, e) = I(21 + l)fB,I(E)Plcos e), 
I~O 

where 

1 II iB.z{E) = - iB(E, e)Plcos e) d(cos e). 
2 -1 

(2.2) 

We suggest a modification of the Born amplitude of 
the form 

f~IB(E, e) = iB(E, e) + ie(E, e.), (2.3) 

where !c(E, e) is the correction term given by 

N 

ie(E, e) = I (21 + l)ie,I(E)PI(cos e), 
!~O 

and where 

ie,I(E) = fe,I(E) - fB,I(E). (2.4) 

Here N denotes the maximum number of lower 
partial waves to be corrected. 

3. THE YUKA WA POTENTIALS 

We consider first a spherically symmetric central 
potential represented by a Yukawa-potential function. 
We scale our distance so that the potential is in the 
form 

U(r) = (2fl/1i2)V(r) = -IX(e-r/r), (3.1) 

where IX is a dimensionless constant whose magnitude 
characte-rizes the parameters of the attractive potential. 
[Usually U(r) = -IX exp (-w)/r, but in this paper 
we have chosen fl = 1 for convenience.] For a central 
field the scattering amplitude in the Born approxima­
tion is given by 

iB(E, e) = - - r sin KrU(r) dr, 1 100 

K 0 

(3.2) 

where 

K = 2k sin (te). 

21. L. Powell and B. Crasemann, Quantum Mechanics (Addison­
Wesley Pub!. Company, Inc., Reading, Mass., 1961), p. 277. 

X {fe,I(E) - fB.z{E)}PtCcos e), (3.5) 

where, for S-wave correction, we should have N = 0, 
and for Sand P correction, N = 1. 

Angular Distributions and Total Cross Sections 
for Weak Yukawa Potentials 

In the numerical calculation reported in this 
section, we have tested the Yukawa potential given by 
(3.1) for two different values of IX, e.g., 1 and 3, 
corresponding to two different strengths of potential. 
For the case of IX = 1 there exists no bound state, 
whereas IX = 3 is strong enough to give an S-wave 
bound state. We have calculated to total elastic­
scattering cross section and angular distribution for 
values of k 2 ranging from 0.2 to 4.0 by numerically 
solving the Schrodinger equation for the above 
potentials (which we designate as the exact value). 
These exact values have been compared with the 
corresponding quantities calculated by the Born 
approximation (3.3), S-wave modified Born approxi­
mation (3.5), and the S- and P-wave modified Born 
approximation (3.5) in order to examine the efficacy 
of our approach-the partial-wave modification of the 
Born amplitude. In calculating the exact partial-wave 
scattering amplitude, we have used the corresponding 
phase shifts obtained by solving the Schrodinger 
equation using the potential (3.1). 

We first discuss the results for the case IX = 1. 
The total elastic-scattering cross section predicted 
by the Born approximation is lower than the exact 
value for low values of k 2 (those up to k 2 = 2.0), 
beyond which its predictions are almost identical 
with the exact ones (Fig. 1): If the S-wave part is 
modified in the way discussed above, the modified 
Born approximation gives a total cross section 
agreeing well with the exact value. Thus it appears 
that only one lower partial-wave correction to the 
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EXACT VALUE 0 
BORN APPROX. ----­
S CORRECTION -. - • - • 
S,P CORRECTION ---

UNITARITY CORRECTION 
TO SWAVE 
METHOD I _ .. - .. -
METHOD 3 ................. .. 
N/D METHOD-.. ·-"·-

2 5 5 2 

FIG. I. The plot of total cross section against k 2 on log-log scale, 
showing the exact value, the Born approximation result, and its 
various modifications for both the cases 11. = I and 11. = 3. k 2 is 
dimensionless. Symbols are explained in the figure. 

Born amplitude is sufficient to predict the exact 
total cross section in the low-energy region for 
the case of a very weak central potential. As for the 
angular distribution up to the values of k 2 = 2.0, the 
Born prediction is always lower than the -exact one 
(Fig. 2). With the S-wave modification it gives values 
very close to the exact. With S- and P-wave modifica­
tions it gives values almost identical to the exact ones, 
except in the very low-angular region (8 < 20°), 
where there is a little disagreement which minimizes 
with the increase of k 2• For values of k 2 greater than 
2.0, the predictions of the Born approximation are 
fairly close to the exact values and hardly need any 
modification. Next we discuss the case of ex. = 3 
when the central potential is strong enough to give 
a loosely bound S-wave state. In this case the total 
cross section predicted by the Born approximation is 
higher than the exact value in the low-energy region 
(Fig. 1). This difference gets minimized with the 
increase of k2 and, beyond k 2 = 2.0, it is not appre­
ciable. At this point we would like to draw attention 
to the behavior of the Born total cross section with 
respect to the behavior of the exact values with the 
variation of potential strength. In the case of ex. = 1 
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FIG. 2. Angular distribution for the case 11. = I; the exact value, 
the Born prediction, and its various modifications. Symbols are the 
same as in Fig. I. 

the Born prediction is lower, while for ex. = 3 it is 
higher than the exact value in the low-energy region. 
This difference diminishes with increasing energy, 
and in the higher-energy region the Born approxima­
tion holds good. 

In the case of ex. = 3 we see that if we modify the 
S- and P-wave part of the Born amplitude in the way 
discussed above, the total cross section given by the 
modified Born amplitude agrees closely with the 
exact one. In the case of angular distribution (Fig. 3), 
the difference between the Born values and the exact 
ones is significant both in the shape of the curve and 
in its magnitude for k 2 < I, beyond which the Born 
values have the same nature but different magnitude. 
But in all the cases we see that the modification of S 
and P waves gives a close fit to the exact values. Thus, 
in the case of a moderately weak central potential, the 
first two lower partial-wave modifications of the Born 
amplitude are sufficient to give a close fit to the exact 
values of total cross section and angular distribution. 

4. UNITARIZATION SCHEMES 

In this section we consider the following question: 
Given the Born amplitude, how mayan amplitude be 
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FIG. 3. Angular distribution for the case (J, = 3. Symbols are the 
same as in Fig. I. 

constructed which satisfies unitarity and some 
dynamical theory? If the Born amplitude was origi­
nally constructed from a potential, then the solution is 
easy: the potential is reconstructed and a Schrodinger 
equation is solved. However, in some problems the 
Born amplitude does not come from a potential, but is 
derived from the lowest-order Feynman diagrams or 
simply by postulating it as the "input potential." 

One technique which has been quite successful in 
the past few years is to require that the amplitude 
satisfy the Mandelstam representation (which serves 
as the dynamics). The left-hand cut is taken to be the 
same as the Born amplitude, while the right-hand 
cut is determined by unitarity. The use of the Nj D 
equations makes this program rather straightforward. 

The unitarity condition is 

Imfz(k2 + iE) = ~ lfz(k2 + iEW, (4.1) 

where k is the relative momentum. The amplitude is 
then written as a ratio 

(4.2) 

where Nz(k2
) has only left-hand singularities and 

DI(k2) has only right-hand singularities. The unitarity 
conditions then become 

1m Dlk2 + iE) = -kNI(k2), k2 2 O. (4.3) 

Using Eqs. (4.3) and the Cauchy integral theorem, a 
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FIG. 4. The geometrical unitarization scheme. 

dispersion relation may be written for D: 

Re f 

D (k2) = _1 roo

dk2 k'N I(k,2) + A(k2), (4.4) 
I 'TT Jo k,2 _ k 2 

where A(k2) is any real analytic function. It is usually 
chosen to be equal to one so that D( (0) = 1. 

A dispersion relation is written for N, using the 
fact that N must have the same left-hand singularities 
as D z(k2)b z(k

2) [where b l(k
2) has the same left-hand 

cut as fz(k 2) and no right-hand cutj, and we approxi­
mate it by the Born amplitude 

N (k2) = b (k2)D (k 2) _ 1. roo dk2 bl(k
2

) 1m DzCk
2
) . 

I I I 'TT Jo k,2 _ k2 

(4.5) 

The normalization imposed on NzCk2) is that for large 
k 2 it must approach b l(k

2) DI(k2); that is, for high­
energy regions the amplitude and the Born amplitude 
become equal. 

The amplitude which is thus constructed does not 
satisfy the threshold behavior fz(k 2)rx.k21 • Equations 
(4.4) and (4.5) can be modified so that the threshold 
behavior is satisfied. 

Now the question stated at the beginning of the 
section is modified: Given the Born amplitude, how 
mayan amplitude be constructed which satisfies 
unitarity? This question may be answered using the 
concept of geometrical unitarization. 3 Unitarity 
implies that the partial-wave amplitude may be 
written as 

fzCk2) = ei~l(k2)sin ol(k2)jk. (4.6) 

We may describe the content of Eq. (4.6) by the use of 
Fig. 4. In the complexfz(k2

) plane the locus of points, 
which satisfy Eq. (4.6) with ol(k2) real, is the circle 

3 M. J. Moravcsik, Ann. Phys. (N.Y.) 30,10 (1964). 
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whose center is at i/2k and whose radius is 1/2k. 
Therefore we may say that any amplitude lying on this 
circle satisfies unitarity. 

The Born amplitude is real. Therefore let a partial­
wave Born amplitude be represented by the vector 
o ~ /B.l' Any rule which transforms the 0 ~ /n.l 
vector into a vector which lies on the circle is an 
adequate rule for transforming a partial-wave Born 
amplitude into one which satisfies unitarity. Since 
there evidently is an infinity of such rules (because 
we are not imposing the restrictions of dynamics), 
any given rule must be tested against a dynamical 
theory in order to give us confidence in the use of 
that rule for any given Born amplitude. We outline 
three rules which have been used, and we examine them 
more carefully for the Born amplitude which comes 
from a Yukawa potential. 

The first rule is to set the real part of the amplitude 
equal to the Born amplitude. This yields the amplitude 
given by the vector 0 ~ /1.1 in Fig. 4. In terms of 
phase shifts this yields 

J1(k
2

) = t sin-l (2kiB,I)' (4.7) 

When/n .l > (2k)-1, this method obviously does not 
work. 

The second method is to set the magnitude of the 
amplitude equal to the Born amplitude. This corre­
sponds to rotating the vector 0 ~ /B.l about the 
origin until it intersects the circle at /2.1' In terms of 
phase shifts this yields 

Jz(k2
) = sin-1 (kin,I)' (4.8) 

When/n. l > k-I, this rule also does not work. 
The third method is based on the K matrix. The S 

matrix is written as 

s = 1 + iK. 
1 - iK 

(4.9) 

When S is expanded in powers of the K matrix, this 
becomes 

s = 1 + 2iK - 2K2 + .... (4.10) 

The leading term in K, 2iK, is set equal to 2ikfu, 
which corresponds to equating the Born amplitude 
with the leading term in the S matrix. In terms of 
phase shifts this becomes 

J1(k
2
) = tan-l (kJiJ,I)' (4.11) 

This rule may be stated differently: The real part of 
the inverse of the amplitude is equal to the inverse 
of the Born amplitude. The geometrical interpretation 
of this rule is that the amplitude is given by the 
intersection of the circle and the line which joins the 
points/B • l and ilk. 

The three geometrical unitarization methods above 
are equal to order k/B.l so that they give approxi­
mately the same phase shifts in a very weak coupling 
theory. In a stronger coupling theory (k/n .l ,,-, 1) 
the three methods differ. (In fact, methods one and 
two may fail.) This strongly suggests that for a given 
Born amplitude the method must be checked against 
dynamics. 

5. TOTAL CROSS SECTION AND 
ANGULAR DISTRIBUTION 

A. Modification of Born Amplitude due to Geometrical 
Unitarity Correction 

Next we discuss the effects of application of the 
unitarity condition to the Born amplitude for the case 
of a weak Yukawa potential given by Eq. (3.1). In this 
case also the modified Born amplitude is constructed 
in the manner discussed in Sec. 2. To calculate the 
exact partial-wave scattering amplitude which replaces 
the projected-out partial-wave Born amplitude, we 
use the phase shifts obtained from the application of 
the unitarity condition to the Born amplitude. Thus, 
we are actually replacing the partial-wave Born 
amplitude by the unitarity-corrected partial-wave 
Born amplitude which now has an imaginary 
part. 

We have discussed three different methods of 
applying the unitarity condition and have noted the 
conditions under which those methods work. We 
have found that, for the case of very weak potential 
strength IX. = 1, all the three methods work. In this 
case the Born approximation gives total cross sections 
much lower than its exact value in the low-energy 
region (Fig. 1). Applying the unitarity condition by 
use of the first method, we find that the modified 
Born amplitude gives total cross sections slightly 
higher than the Born prediction and gets closer to the 
exact value with increase in energy. As for the second 
method, we see that it does not change the Born 
prediction at all, and the total cross section given by 
the modified Born is equal to the Born prediction 
itself. Applying the third method, it is found that the 
total cross section given by the modified amplitude is 
slightly lower than that given by the Born amplitude; 
thus it gives the worst agreement with the exact value. 
In all the three cases above the total cross sections 
given by the S-wave-modified Born amplitude and s­
and P-wave-modified Born amplitude have almost 
equal values and fall on the same line in the graph. 
This is because the P-wave suffers very small phase 
shifts for such a weak potential in the low-energy 
region. 
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Now, for the slightly stronger potential IX = 3, 
the first and the second methods of applying the 
unitarity condition do not work, and so we use only 
the third method. In this case the Born amplitude 
predicts total cross sections much higher than the 
exact value in the low-energy region. By using the 
third method (applying the unitarity condition), it is 
seen that the modified amplitude gives total cross 
sections lower than the Born amplitude as well as the 
exact value, except in the very low-energy region 
(k2 < 0.1). In this case also the main correction 
comes from S-wave modification alone; the contri­
butions of P-wave correction are very small and occur 
in the high-energy region. 

We have also investigated the effect of the unitarity 
condition on the angular distribution for the case of 
low-energy scattering where the Born approximation 
fails to predict the exact value. We discuss first 
the case of IX = 3, when only the third method is 
applicable. In this case (Fig. 3) the Born approxima­
tion gives angular-distribution curves, as we have 
noted before, which are different from the exact ones, 
both in shape and magnitude for k 2 < 1, beyond which 
they have the same nature but different magnitude. 
The S-wave-modified Born amplitude 'lowers the 
magnitude of the Born prediction for k 2 < 1, but still 
it differs both in shape and magnitude with respect 
to the exact ones. For k 2 = 1 it gives an angular 
distribution which is lower than the Born value and the 
exact value in all the angles except the forward direc­
tion, where it is closer to the exact value. For higher 
values of k 2 the modified amplitude gives values closer 
to the exact ones, but then, with increasing energy, the 
Born prediction itself gets closer to the exact value. 
When we modify both the Sand P wave, we see that 
the inclusion of the P wave does not change the values 
significantly, but rather gives almost the same values 
as S-wave modification. 

For the case IX = 1 all the three methods of unitari­
z~tio,n w?rk. The Born approximation gives angular 
dIstrIbutIOn lower than the exact one in the low­
energy region, but it gets closer to the exact value with 
an increase in energy (Fig. 2). For the case k 2 < 1 
the first method gives values slightly higher, and the 
third method gives values slightly lower, than the 
Born value; method two gives values almost the same 
as the Born prediction. The same trend continues 
with the increase in the value of k 2 , only the magnitude 
?f the difference is reduced while the Born prediction 
Itself gets closer to the exact value. As in the case of 
IX = 3, here also the inclusion of the P wave to the 
modification contributes practically nothing. 
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FIG, 5. The S·wave phase shifts for the case <X = 3 due to different 
methods as explained in the figure. 

B. Modification of Born Amplitude Using N/ D 
Method 

While examining the partial-wave modification of 
the Born amplitude, we have made use of the partial­
wave phase shifts as obtained by the application of 
Nj D method to Yukawa-potential scattering. As a 
matter of fact, Luming4 has given such partial-wave 
phase shifts for the Yukawa potential strengths that 
we have considered in our papers (e.g" IX = 3 and 1), 
and we have used his values. In the case of total 
cross sections, the effect of using those phase shifts to 
modify the Born amplitude is to increase the Born 
(total cross section) value in the low-energy region; 
whereas in the higher-energy region (k 2 ,....., 1), this 
modified amplitude gives values agreeing closely with 
those given by unitarity method three, which is lower 
than the Born value (Fig. 1). For the potential 
strength IX = 1, this increase in the total cross section 
in the low-energy region (k2 < 0.5) brings it closer 
to the exact value. For the case IX = 3, an anomaly 
occurs in the low-energy region. An examination of 
Fig. 1 shows that the total cross section using the 
Nj D phase shifts gives a rather high result compared 
t~ the Born and exact total cross sections. But yet 
FIg. 5 shows that the S-wave phase shift (which 
dominates the low-energy cross section) for the N j D 
is much closer to the exact phase shift than the Born 
value obtained by the K-matrix method. This anomaly 

• M, Luming, Phys. Rev. 136, BI120 (1964). 
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occurs because the total cross section in this region 
(k = 0.1-0.6) is approximately proportional to sin2 bo. 
Furthermore, in this region bo (Born):::: 'IT - bo 
(exact), so that the total cross sections given by the 
exact and Born phase shifts will be close compared to 
the results of the Nj D method. 

In the higher-energy region (k2 ~ 1) for both the 
values of IX, this modified amplitude gives values 
lower than the exact ones. Thus we find that the 
modification using Nj D phase shifts increases total 
cross sections in the very low-energy region and lowers 
its value in the higher-energy region. 

Next we discuss the angular distribution given by 
the modified amplitude using Nj D phase shifts. In the 
case of potential strength IX = 1 for k 2 = 0.2 (Fig. 2), 
this modification increases the Born value, but still 
it is lower than the exact one. (Actually it lies midway 
between the two.) When k 2 = 0.5, this modification 
very slightly increases the Born value; whereas for 
k 2 = 1.0, it gives values lower than the Born prediction 
and the same as the unitarity method three. In all 
three cases above, the exact value is always higher 
than the Born value. 

In the case of IX = 3 for k 2 = 0.2 (Fig. 3), the 
modified amplitude gives values which agree better 
with the exact one than do the Born values, even 
though for e < 120° the difference in magnitude is 
quite great. For IX = 3 and k 2 = 0.5, the modification 
lowers the Born value and makes it closer to the exact 
one for e < 90°, beyond which it does not effect the 
Born value much. With increasing energy values 
k2 = 1.0 and 2.0, we find that Nj D modification and 
that due to unitarization method three give the same 
values which are quite close to the exact ones. 

6. DISCUSSION AND CONCLUSIONS 

In this paper we have discussed the method of 
partial-wave modification of the Born amplitude for 
elastic scattering by a weak central potential in the 
low-energy region. In this context we have examined 
various geometrical unitarization methods and the 
results of their application have been discussed. It is 
found that the first two lower partial-wave modifica­
tions of the Born amplitude, using the exact phase 
shifts corresponding to those partial waves, works 
best in predicting the exact values of total cross 
sections and angular distributions in the low-energy 
region. But none of the three different unitarization 
methods works that well, as we have noted in Sec. 5. 
Although throughout this paper we have dealt with 
Yukawa-potential scattering, this method is applicable 
to any form of potential representing a weak inter­
action that barely gives a bound state or gives none 

at all, such as a nucleon-nucleon or electron-light 
atom in the low-energy region (in which case only the 
first few lower partial waves undergo quite substantial 
phase shifts, while others suffer very little phase shift). 
For nucleon-nucleon scattering due to the extreme 
long range of the 'IT meson, it is necessary to include 
as many as eighteen partial waves to reproduce the 
differential cross section. For d waves and higher, the 
Born approximation applied to the 'IT-meson potential 
gives the phase shifts quite well. The heavier mesons 
greatly complicate and enhance the potential in the 
short-range region (r < 1 fm) of the N-N interaction; 
consequently, in the low-energy region, the Born 
approximation is not applicable for Sand P waves. 
Also, in the case of electron scattering by light 
atoms, it is found that only a few lower partial waves 
suffer large phase shifts, although, in all, around ten 
partial waves are affected. 

If we want to use the partial-wave method in such 
cases, we need to consider quite a large number of 
partial waves, even if most of them (except the lower 
few) are slightly phase shifted. This is not quite 
practicable in view of the very large number of terms 
involved; in addition, all the required phase shifts 
may not be available, derived either experimentally or 
phenomenologically, for such a calculation. In the 
method described in this paper we need know only 
the first two or three lower partial-wave phase shifts to 
make the Born approximation applicable in the low­
energy region. In many cases involving weak potentials 
as cited before (e.g., N-N and e-He), the experimental 
values of such phase shifts are available, and the 
actual calculations for such cases are underway 
and will be reported soon. Incidentally, it may be 
noted that the interaction between an electron and a 
light atom in the case of elastic scattering may be 
represented by a potential of Yukawa form,S which 
is also used in representing the interaction between 
two nucleons due to the exchange of mesons. 

In the calculation of thermodynamic properties of 
many-body systems of charged particles, i.e., plasmas, 
it is shown that the shielded Coulomb (Yukawa or 
Debye-Hiickel) potentiaI6

•
7

•s is quite good in describ­
ing the effective two-particle quantum interactions in 
a sea of charged particles (such as a hydrogen plasma). 

Recently Swan9 has discussed various methods of 
counting the number of bound states in a central 

5 L. I. Schiff, Quantum Mechanics (McGraw-Hill Book Company, 
Inc., New York, 1955). 2nd ed., p. 170. 

6 G. M. Harris, Phys. Rev. 125, 1131 (1962). 
7 D. Kelley and H. Margenau (unpublished), as reviewed by 

H. Margenau and M. Lewis, Rev. Mod. Phys. 31, 569 (1959). 
8 G. Ecker and W. Weizel, Ann. Physik 17, 126 (1956). 
• P. Swan, Phys. Rev. 153, 1379 (1967). 
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potential and has also given an approximate method of 
evaluating all the eigenenergies via scattering phase 
shifts for such a potential. This is helpful in choosing 
the appropriate strength of potential that barely gives 
a bound state, which is of interest to this paper. For 
the potential strengths considered here (e.g., (J,. = 1 and 
(J,. = 3), it has been found that the first bound state 
of zero energy appears at (J,. = 1.7. 

Gerjuoy and SaxonlO have studied the application 
of Schwinger's variational principle to central-field 
scattering by a Yukawa potential in the intermediate­
energy region and have found that it gives better 
results than the Born approximation. They have also 
noted that this holds good for most potentials. 

In cases where there is a Coulomb potential in 
addition to a Yukawa potential, the modified Born 
method does not work. This is simply due to the fact 
that a partial-wave expansion of the Coulomb 
amplitude diverges. However, in the case of proton­
proton scattering, the method is still applicable if 
one ignores the Coulomb potential in taking the Born 
approximation. The lower partial waves may be 
projected out of the Born amplitude and replaced by 
exact amplitudes which contain the Coulomb effects. 
This procedure then ignores the Coulomb effects 
for the higher partial waves. This seems to be reason­
able for d waves and higher for energies above 20 
MeV.n 

In the nucleon-nucleon problem one of the current 
trends is to take the Yukawa potential (or its 
corresponding Born term) to represent the force due 
to the exchange of a meson. A field-theoretic deriva­
tion of this potential shows that the potential contains 
noncentral parts such as spin-orbit forces, velocity 
dependence, and possibly a repulsive core; however, 
the general nature of the potential is still of the Yu­
kawa type. Several authors have used a superposition 
of Yukawa potentials to fit the nucleon-nucleon 
phase-shift data by varying the masses and coupling 
constants of the exchanged mesons. The values of the 
parameters vary according to the particular unitarity 
scheme which is used. 

In order to see easily the dependence on the unitari­
zation scheme, we idealize the situation by varying 
only the parameters for one meson. Furthermore, 
we shall ignore the spin dependence of the meson 
potentials so that we may directly compare the 

10 E. Gerjuoy and D. S. Saxon, Phys. Rev. 94, 478 (1954). 
11 R. Arndt and M. MacGregor, Phys. Rev. 141,873 (1966). 

unitarization effects for the simple Yukawa poten­
tial. 

By examining Fig. 5 we can tell something about 
the relationship between coupling constants and 
masses of the exchanged mesons. The figure gives the 
S-wave phase shifts as a function of k/{J [see paren­
thetical expression after Eq. (3.1)]. If the mass {J is 
increased (decreased) for a fixed value of k, the net 
effect is that the phase-shift curve is expanded 
(contracted) to the right (left). In the case where many 
mesons are exchanged (i.e., the potential is a super­
position of Yukawas), the phase shift is not a function 
of k/{J but is a function of k and {J, independently. 
However, the shift of the curve due to a variation of 
{J is still monotonic. An increase (decrease) in the 
coupling constant monotonically increases (decreases) 
the phase shift for a fixed value of K. 

Therefore, if only S waves are included in an 
analysis (which usually is not the case), one would 
expect that the Schrodinger and N/ D methods 
would use about the same masses, but that the N/ D 
method would use a much larger coupling constant. 
The Born phase obtained by the K-matrix method 
possibly would use a slightly smaller mass, but a 
larger coupling constant than the Schrodinger phase. 
When the higher partial waves are considered, 
approximately the same effects occur. The Born and 
N/ D phases are always lower than the Schrodinger 
phase, thereby requiring larger coupling constants. 
Also the Born and N / D phases cross at k / {J = I, 
so that the comparison of the coupling constants for 
the Born and N! D depends on where the phases are 
fitted to the experimental points. Unfortunately, for 
the nucleon-nucleon problem this simple analysis 
is not adequate, since it appears that, in order to fit 
the experimental data, it is necessary to use the 
exchange of several mesons. Also it appears that some 
type of "cutoff" must be used in the calculations. 
The presence of these two added complications make a 
direct analysis of the comparison of phenomenolog­
ically determined coupling constants and masses quite 
difficult. Not only the method of imposing a cutoff 
but also the values of the cutoff parameters strongly 
influence the values of the phenomenological param­
eters. 
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The exact propagator of a spinless charged particle in a uniform electromagnetic field with lEI = IHI 
and E • H = 0 is shown to lack the pole corresponding to the mass of the particle. 

The purpose of this note is to point out the peculiar 
analytic properties of the Green's function for a 
charged particle moving in a uniform electromagnetic 
field. The electromagnetic field we have considered 
satisfies the conditions 

E· H = 0, lEI = IHI = const; (1) 

i.e., it can be derived from an electromagnetic poten­
tial of the form 

AI' = a"k. x (2) 

with a· k = 0, k 2 = O. Since a uniform field with the 
properties (1) can be viewed as the limiting case of a 
plane-wave electromagnetic field of very large wave­
length, the Green's function for a charged particle 
could, in principle, be obtained from that Gorre­
sponding to a radiation field. The latter has recently! 
been worked out in detail, but, rather than involve 
ourselves in a somewhat delicate limiting process, we 
prefer to rederive the Green's function directly for 
this particular case. This is a relatively simple proce­
dure, especially for the case of a spinless charged 
particle when the Green's function is a solution of the 
equation 

[(01' + ieA)2 + m·2]G(x, x') = -r5(x - x'). (3) 

If then G(x, x') is looked for in the form 

G(x, x') = (2~)4 J dp e- iP
' (x-x') f(k • x, k . x'), (4) 

it can be readily seen thatj(y, y') satisfies the equation 

(p2 _ m2 + e2A2 - 2ep. A)f(y, y') 

+ 2ip. k(ofloy) = 1, (5) 
whose solution is 

fey, y') = (lj2ip. k) exp [-i{<xy + fJl- yi)] 

x r dr; exp [i(IXr; + fJr;2 - yr;3)], (6) 

where 

IX = (m2 - p2)j2p • k, fJ = ep • aj2p • k, 

y = e2a2j6p • k. (7) 

* Work supported in part by the U.S. Army Research Office, 
Durham, North Carolina. 

1 H. R. Reiss and J. H. Eberly, Phys. Rev. lSI, 1058 (1966). 

To make the definition of the Green's function 
unambiguous we specify that a small negative imag­
inary part should be added to the mass m in the 
above equations. This specification corresponds, of 
course, to the definition of the propagation function 
in the sense of Feynman. 

We use now the representation2 

exp [-i(fJl- yi)] = L:dSAp(S)eiSY (8) 

in order to rewrite the solution corresponding to the 
case y' -+ - 00 as3 

fey, - 00) = -.- dA ds ds'A:(s')Ap(s) 1 loo foo foo 
21P' k 0 -00 -00 

X exp [- i),( IX - s') + i(s - s')y]. (9) 

It follows immediately that the Fourier transform 

F(q, q') = (2~)8 J dx dx'eiq'X-iq"X'G(x, x') (10) 

of the Green's function constructed by means of the 
solution (9) is 

F(q, q') = ~ _._1_]00 dAJoo dsJoo ds'A:(s') 
(27T) 21q. k 0 -00 -XJ 

x Ais)e-w.-S)b[q' - q - (s' - s)k], (11) 

where it is understood that q replaces p in the defini­
tions (7). Note also that Aq'(s) = Aq(s) when 

(q - q'). k = O. 

Consequently, in general q ~ q', and this fact, 
which also occurs in the case of a radiation field, has 
been interpreted in Ref. 1 as indicating the description 
by means of the Green's function of real absorption 
or emission processes. Let us concern ourselves, 
however, with only that part of (11) which describes 

2 A. I. Nikishov and V. I. Ritus, Zh. Eksp. Teor. Fiz. 46, 
776 (1963) [Sov. Phys.-JETP 19, 529 (1964)]. 

3 When the field (I) is considered as a special kind of radiation 
field, one should perhaps keep in mind that the limit of large 
wavelengths is not necessarily interchangeable with the limit 
y' -> - x!. In the present work we explicitly assume that the source 
point is relegated to infinity while the particle is kept permanently 
in the uniform field. 
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pure propagation; it is given by the expression 

Fo(q, q') = b(q - q') 

x _1 _ f OCJ d S _A--.!:!....:(,-,s ):...-A::.!!q~( s.!....) _ 
(217)4 -OCJ (q + Sk)2 _ m2 . 

(12) 

The effect of the presence of the electromagnetic field 
thus becomes evident. If a = ° (i.e., f3 = 0, y = 0), 
obviously Ap(s) -+ 15(5), and therefore 

F(q, q') -+ b(q - q')[I/(217)4][1/(q2 - m2)), (13) 

i.e., the Green's function describes only the propaga­
tion of a particle of momentum q, and the presence 
of the pole at q2 = m2 shows that the mass of the 
particle is m. Now, for a ,.c 0, Ap(s) is a regular func­
tion of s. Specifically, for a ,.c 0, 

Ap(s) = - dy exp [-i(sy + f3l- yi)) 1 foo 
217 -00 

where 

= 17-!(6y)-1 exp [is(4f3/3y) 

-4iy(4f3/3y)3). <1>(~), 

(14) 

(15) 

It is now apparent that, in contradistillction to the 
free-particle propagator (13), F(q, q') does not 
exhibit a pole for any value of q. More exactly, the 
imaginary part of the propagator 1/(m2 - q2) is 
l7b(m2 - q2) while, when the particle propagates in 
the presence of the uniform field, the imaginary part 
coming from (12) is proportional to 

(16) 

and this is a bounded function for any value of the 
argument, as is shown in Fig. 1 where (16) is plotted 
against 

g _ m2 _ q2 + 2q . kf3/3y 
0- 2q. kyl 

(17) 

This behavior is to be compared not only to the free­
particle case but to the case when the particle moves 
in a radiation field as well. As shown in Ref. I, the 
propagator has in this case a pole at q2 = 1112 + flm2, 
where flm 2 is a "mass shift" due to the presence of the 

CO 

FIG. 1. Structure of IAq[(m2 - q2)/2q . kJl'. 

external field. In our case, as can be seen from (12), as 
soon as the particle finds itself in a uniform field, the 
pole at m "stretches" to become a "cut" extended 
along the entire real axis. If one is then willing to look 
at (16) as giving the "mass distribution" of the 
particle, one might be tempted to relate the position 
of the first peak to the mass shift observed in the 
radiation field case. However, strictly speaking, the 
absence of a pole in the propagator actually precludes 
any such interpretation, since it shows that the mass 
has no definite value, even if some seem more 
"probable" than others. 

The possible disappearance of the one-particle 
contribution to the propagator of a particle coupled 
to an electromagnetic field has also been indicated by 
Schroer ,4 though in a rather different context. If the 
phenomenon pointed out by Schroer has the same 
origin as the above peculiar analytic behavior of the 
propagator, then it might be that even the appearance 
of a mass shift in the radiation-field case reflects the 
same anomalous behavior of the Green's function of a 
particle in an electromagnetic field-although severe 
doubts as to its occurrence and interpretation have 
been raised on apparently different grounds. 5 
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The analytic properties of the functions Sz(k) for a class of nonlocal interactions are studied in the 
complex k (wavenumber) plane, for physical angular momenta. The results are compared with those of 
the local interactions. Two specific examples are discussed. 

1. INTRODUCTION 

Recent studiesl- 4 have emphasized the importance 
of nonlocal, factorable interactions, because of the 
possibility they offer of finding exact solutions for 
both bound-state and scattering problems. 

Another series of work5- 8 has shown that from the 
study of finite-rank interactions one can deduce 
consequences relevant for a more general class of 
interactions. 

A detailed investigation of the analytic properties 
of nonlocal but finite-rank interactions therefore 
appears interesting. In particular, one has to expect 
that the methods based on the study of the integral 
kernel of the Lippmann-Schwinger equation might 
lead to explicit results for these interactions. 

In this paper we are dealing with the analytic 
properties of the functions SI(k) in the complex k 
plane, for physical angular momenta, for a definite 
class of interactions, which are separable in the sense 
defined in Ref. 4 and are also linear combinations of 
factorable ones. 

I n Sec. 2 we define the class of interactions we are 
considering. These will always be invariant against 
rotation and time reversal and in addition will satisfy 
some further conditions of a mathematical character, 
in order to allow computations in specific cases. 

In Sec. 3 a study is made of the analytic properties 
of Sl(k), starting directly from the hypotheses defining 
the interactions under consideration. Such a study 
is connected with the study of the integral kernel of the 
Lippmann-Schwinger (or Schrodinger) equation, con­
sidering this kernel as a function of the complex 
parameter k (wavenumber). 

In particular, we shall see that Sl(k) is single 
valued in the complex k plane, or in other words that 
there is only one analytic continuation from the 

1 Y. Yamaguchi, Phys. Rev. 95, 1628 (1954). 
• J. T. Cushing, Nuovo Cimento 28, 819 (1963). 
3 A. N. Mitra and J. D. Anand, Phys. Rev. 130,2117 (1963). 
4 G. C. Ghirardi and A. Rimini, J. Math. Phys. 5, 722 (1964). 
5 F. Coester, Phys. Rev. 1338,1516 (1964). 
• S. Chisholm, J. Math. Phys. 4, 1506 (1963). 
7 S. Tani, Ann. Phys. (N.Y.) 37,411 (1966). 
• S. Tani, Ann. Phys. (N.Y.) 37, 451 (1966). 
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physical sheet to the unphysical sheet of the energies. 
The study will be made starting from functions 
analogous to Jost ones, and will show the possibility 
of finding bound and virtual states. The possible 
existence of Sl(k) poles, which do not correspond to 
bound states, and are analogous to Ma poles9 for 
local interactions will be shown for a purely imaginary 
k; the possibility of having bound states for positive 
values of the energy will also be shown. 

In Sec. 4 two explicit examples are given of the 
methods we have introduced. The former is relative 
to the Yamaguchi potential,l the latter is relative 
to that potential which gives the "orthogonality 
scattering" 10 defined by starting from the bound 
state of the Yamaguchi potential. The analytic 
properties in the angular-momenta complex plane for 
the same class of interactions that we have considered 
in this paper will be studied in a subsequent paper. 

2. DEFINITION OF THE CONSIDERED CLASS 
OF INTERACTIONS 

We shall consider Hamiltonians H = Ho + V, 
where Ho = p2j M and the matrix elements of V in the 
momentum representation are given byll 

(pi Vip') 

.Ie is a real number, Land Il natural numbers. The 
form (2.1) ensures the rotational invariance of the 
interaction. 

We shall also make the hypotheses that for any I 
(0 ~ I ~ L) and for any i,j (1 ~ i,j ~ II): 

(a) gi/(p) is nonsingular and real for real p; 
(b) there exists a unique analytic continuation of 

gi/(p) into the complex p plane, apart from isolated 

• T. Y. Wu and T.· Ohmura, Quantum Theory of Scattering 
(Prentice-Hall, Inc., Englewood Cliffs, N.J., (962), p. 96. 

10 R. G. Sachs, Phys. Rev. 95, 1065 (1954). 
11 Equation (2.1) describes positive or negative definite interac­

tions. It would seem at first sight that analysis of Sec. 3 does not 
need this restriction. However, it turns out that the proof exhibited 
in (3.17) does not apply to interactions having both attractive and 
repulsive parts. 
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singularities and such a continuation is an even, 
merom orphic function of p; 

(c) lim J dpgll(P)gi/(p) = 0, 
p .... oo Cp 

where CP is the half-circle having center in the origin 
and radius P, lying in the upper half-plane. 

Hypothesis (a) ensures the time reversal invariance.1 

Hypotheses (b) and (c) allow us to calculate some 
frequently occurring integrals. 

The giJp) (1 ~ i ~ II) have the following prop­
erties, which will be employed later: 

2Pl: If p is purely imaginary, then gil(P) is real. 
This follows on from the hypotheses (a) and (b), 

and from the reflection principle of Riemann­
Schwarz.12 •13 

2P2: gil(P) has a finite number of poles in the 
complex p plane. 

In fact, if there were an infinite number of poles, 
either they would have a limit point in the finite plane 
which contradicts hypothesis (b), or they would 
accumulate to infinity, contrary to hypothesis (c). 

Let F stand for the class of interactions defined by 
(2.1) and hypotheses (a), (b), and (c). It forms 
a generalization of the potential considered by 
Yamaguchi in Ref. I, which is obtained by putting 
L = 0; 10 = I; glO(P) = (P2 + (J2)-1 in Eq. (2.1). 

3. ANALYTIC PROPERTIES OF S!(k) 

Let us consider the S matrix (on the energy shell) 
for an interaction of class F. 

From the usual definition one gets: 

(kl S Ik') 
= (!p~-) IlP~;» 

= (k I k')- 21Tib[(k2/M) - (k,2/M)](kl T Ik'), 

(Ikl = Ik'l), (3.1) 

(kl T Ik') = (kl V IlP~;»' (3.2) 

IlP~;» = Ik') + (E - Ho + iE)-1V IlP~;»' (3.3) 

Let us now consider the resolution of the identity 

1 = L roo dk Iklm)(klml, (3.4) 
l,mJo 

12 Let us remember the principle of reflection of Riemann­
Schwarz: "Suppose that a region D of the Z plane has as part of its 
boundary a segment I of a straight line; and that w = fez) is an 
analytic function, regular in D and continuous on I, and such that, 
as z describes I, w describes a straight line A in the w plane. Let z 
be a point of D, z, its reflection in I, and let w, be the reflection of 
win A. Then W, = W,(Z,) is an analytic continuation of w." 

13 E. C. Titchmarsh, The Theory of Functions (Clarendon Press, 
Oxford, 1960), 2nd ed., p. 155. 

in which the states Iklm) are normalized by 

(k'I'm'l kIm) = b(k - k')bll,bmm,. (3.5) 

Thus we have 

(k' I kim) = k-1b(k - Ik' I) y;,,(k'). 

For an interaction of class F we have [as a con­
sequence of (2.1)1 

(k11m11 V Ik'/2m2) 

Let us define Sl(k) by 

(k'I'm'l S Iklm) = bmm,bll,b(k - k')SI(k) (3.7) 

and lPkti(k) by 

(3.8) 

If we insert the resolution of the identity (3.4), in 
Eq. (3.1), taking into account (3.2), (3.3), (3.6), (3.7), 
and the orthogonality of spherical harmonics Y{"(k) , 
we get 

Sl(k) = 1 - 1Tik{ -4d i~ g71(k) 

l oo 2 h 1 + dk1k1( - )41TA L gil(k)gil(kJ 2 2 . 
o i=1 k - k1 + IE 

X 100 

dki - )41TAk4i~ gil(k1)gil(k4)lPki)(k4)}. 

(3.9) 

It is to be noticed that lPkt)(k4) appearing in (3.9) 
must satisfy the integral equation, deduced from (3.3) 

(+)(k) _ b(k4 - k) 
lPkl 4 - k 

_ 41TA [''' dk2k2k4 ~ gil(k4)guCk2)lPk~)(k2) , 
Jo i=1 k2 

- k; + IE 

(3.10) 
whose kernel is of rank II' 

Ifwe put 

J,. '. (-k) = 41Tioo dk k~gil(k2)gjl(k2) 
',j,l 2 k2 k2 +. ' o - 2 IE 

(3.11) 

the solution of (3.10) is given by14 

lPki)(k4) = [b(k - k4)/k] + [det Ibij + AJ"d _k)lrl 

X (- )41TA ~ g;l(k)g~l(k4).k4 d(!) , (3.12) 
i,i=1 k - k4 + IE I I 

14 F. Riesz and B. Sz. Nagy, Lecon d'analyse fonctioneUe (Gauthier­
Villars, Paris, 1965), p. 161. 



                                                                                                                                    

590 D. GUTKOWSKI AND A. SCALIA 

where d(~) is the cofactor in det 10ji + A/; i'Z( -k)1 
I Z " 

of the element 0i; + A!;.i;l( -k). 
By substituting (3.12) into (3.9), after some lengthy 

algebra, one gets 

S/(k) 

= det 10ij + ?.fi.d -k)1 +47T2i?.ki'~1 gH(k)gy/(k)d C} 
det 10il + ?.h,l;Z(-k)1 

(3,13) 
Let us put 

Dz( -k) = det IOij + ?.h,d -k)l. (3.14) 

We want now to show that hypotheses (b) and (c) 
of Sec. 2 allow us to establish the following proposi­
tions: 

3PI: (3.14) and (3.11) define uniquely a function 
D I ( -k) which is meromorphic in the upper half-plane. 
This function can be continued analytically (apart 
from a finite number of poles) into the whole complex 
k plane in a unique way. 

We shall again call the function thus continued 
D z( -k). Therefore DI(k) will also be a function 
which is meromorphic in the whole complex k plane. 

3P2: The numerator in (3.13) is Dz(k). 

Proof' Let us remember 2P2. If g;z(k2) , gjl(k2) have, 
in the upper half-plane, respectively, rand s poles 
at the points qil' ... ,qir; qjl' ... ,qjs> hypotheses 
(b) and (c) of Sec. 2 allow us to obtain for h.i;l( -k) 

h,l;Z( -k) = 47T
2{t k!::~" + ~1 k!:~~P 

- Hgi/(k)gJI(k)k]}, (3.15) 

where Res (Res) is the residue, calculated in qia(q iP)' 
,,"?~qia k2~qjP 

of the integrand of (3.11) as a function of k 2 • 

From the hypothesis (b) the last term on the right­
hand side of (3.15) has the property expressed by 3PI 
that we want to prove D I ( -k) to have. It will be 
enough to prove that the other terms on the right­
hand side of (3.15) have the same property. Let qi be 
a pole of gil(k2). If kigil(kz)gjl(k2) is singular in qi' 
then according to the hypothesis (b) there exists a 
natural number M such that in a certain neighborhood 
of qi (excluding perhaps qJ the Laurent expression 
gives 

2) d_J1 
k2gil(k2 gn(kz) = (k )_11 + ... 

2 - qi 

Let k ¢ qi in (3.11). The Taylor expansion for 
(k2 - ki)-l gives 

(k2 
- k~)-l = CoCk) + C1(k)(k2 - q;) + ... , 

where, for any natural m, 

1 d
m 

1 I Cm(k) = - - 2 2 • 
m! dk~ k - k2 k2~qi 

Therefore 

One can see that Cm(k) (as functions of k) are 
single-valued, even meromorphic functions, having 
poles only in k = qi' k = -q;. 3PI is thus proved. 

From (3.15) the element Oil + ?"h,i;l( -k) can be 
expressed as 

with 

ai i;z(-k) = Oii + 47T
2iA(i Res + iRes) 

,,~1 k.=qi~ P=l k2=QjP 

even function in k, 

bi,i;Z( -k) = 27T2i?.gil(k)gjl(k)k odd function in k. 

If one expands 

D l( -k) = det 10ji + )[;,};l( -k)1 

= det lai,i;l( -k) - bi,i;I(-k)1 

as a sum of determinants whose columns are made 
only with either the functions ai,j;l( -k) or with the 
functions bi,i;l( -k), from the particular form of 
bi i'Z( -k), determinants having two or more columns 
in' bi,i;l( -k) vanish. Therefore we shall get 

detloij + ?.J..,i;I(-k)1 

= det lai,i;I(-k)1 - ~ bi,i;l( -k) d ('~) , 
i.i=l (a) J I 

where d (~) is the cofactor of the element of the ith 
«d ) I 

row and the jth column belonging to the matrix having 
the jth column in bi,i;l( -k), and the other in 
aw,,,;/( -k). It is easy to see that the numerator on 
the right-hand side of (3.13) can be written as 

det la;.i;l( -k) + bi,i;l( -k)l. 

From the fact that aU;I( -k) and b;,i;l( -k) are 
single-valued meromorphic functions in the complex 
k plane, and from their parity, 3P2 is proved. 

Then the equality 

(3.16) 
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There are remarkable analogies between the case 
we have dealt with and the case of local potentials: 

(a) (3.16) is formally analogous to the expression 
of Sl(k) in terms of Jost functions for local inter­
tions.I5 

(b) The Jost function F l ( -k) for local interactions 
is equal to the Fredholm determinant relative to the 
integral kernel of the Lippmann-Schwinger equation 
for the lth partial wave. It is easy to see that D l ( -k) 
in 1m k > ° is the Fredholm determinant of (3.10). 

Let us observe that the proof of the equality 
between Jost function F l ( -k) and Fredholm deter­
minant of the integral Lippmann-Schwinger equation 
for the lth partial wave is deduced in Ref. 16 for local 
interactions, starting from assumptions which are 
different from those we have in our case. 

(c) Zeros of D l( -k) in 1m k > 0, Re k = ° corre­
spond to the bound-state energies of the system. In 
fact, one knows from the theory of integral equations14 

that zeros of det 10il + A/;,i;l( -k)1 give all the 
characteristic values (and only these) of the homoge­
neous integral equation associated with (3.10), whose 
solution belongs to V. 

(d) Between Dl(k) and D l( -k) there is the so­
called Hermiticity relationship 

D7( -k) = D/(k*). (3.17) 

Proof' Let us recal! 

D l ( -k) = det 10il + Ai;,i;l( -k)l, (3.14) 

(3.11), and successive assumptions. j~,l;l( -k) = 
analytic continuation of the function 

47T roo dk k~gil(k2)gjl(k2) (1m k > 0) 
Jo 2 k 2 

- k~ 

and the reality of A. One sees that D l ( -k) make any 
nonsingular point of the upper imaginary semiaxis 
(1m k > 0; Re k = 0) correspond to a point of the 
real axis in the W = D l ( -k) plane. So it is also for 
the points of the lower imaginary semi axis (1m k < 0, 
Re k = 0) according to the expansion of D l ( -k) in 
det lai,i;l( -k) - bi,i;l( -k)1 due to the parity of the 
functions ai,i;l( -k), bi,i;l( -k) we have seen in the 
proof of 3PI and 2Pl. 

Excluding the singular points of DzC -k), which 
according to 2P2 and 3PI are in a finite number, let 
us apply the reflection principle of Riemann­
Schwarz.I2 If kI is a point of the complex k plane, 
its reflection in the 1m k axis is -ki. If WI = 

Dl ( -kI), its reflection in the Re W axis is W: = 

15 V. De Alfaro and T. Regge, Potential Scattering (North-Holland 
Pub!. Co., Amsterdam, 1965) p. 39. 

1. R. G. Newton, J. Math Phys. 1, 319 (1960). 

D~( -k1), and from the reflection principle 

* * * WI = Dl (-kl) = Dl(kd. 

From (3.16) and the proof of 3PI and 3P2 one sees 
how "false poles" can arise in Sl( -k). Let us suppose 
that there exists a pole qi of gil(P) such that Re qi = 0, 
1m qi > 0. Then -qi = -k w!ll be, in general, a pole 
of ai,i;l( -k) and therefore of Sl(k) in 1m k > 0, but 
not a zero of D l ( -k). 

Therefore, in k = qi (1m qi > 0), Sl(k) may have 
a pole which does not correspond to a bound state. 

In both the examples of the following section we 
shall see that this possibility is verified. 

Let us conclude this section by observing that for 
interactions of class F there are possible bound states 
at positive energy. The following example will show 
this fact. Let us consider the potential of class F and 
rank I, defined by 

(pi VIp') = -(AjM)g(p)g(p') 
with 

and k~ real and positive. 
Thus, 

A - [rOOd l(p2 - kD J-1 

- Jo P (p2 _ (32)2(p2 _ f3*2)2 

is a real characteristic value of the integral Schrodinger 
equation 

1p(p) = A roo g(P)g~')1p~;,)p'2 dp', 
Jo p - 1 

which admits the normalizable solution 

1p(p) = Nj[(p2 - (32)(p2 - f3*2)]EI:(0, (0) 

relative to the value k~j M of the energy. 
In the r representation we have 

ip(r) = 7T
2N exp (-r 1m (3) sin (r Re (3)/r Re f3 1m (3, 

where f3 is the square root of f32 with 1m f3 > 0. 

4. EXAMPLES 

This last section is devoted to the exposition of two 
examples, in which are applied the results we have 
deduced in the preceding section. 

The first example refers to the potential of class F 
and rank I studied by Yamaguchi in Ref. 1 and 
defined by 

(pi Vip') = -(A/M)g(p)g(p'), 

g(p) = (p2 + (32)-1, (4.1) 

A being chosen in such a way as to have a bound state 



                                                                                                                                    

592 D. GUTKOWSKI AND A. SCALIA 

of energy -oc2/M. We have obviously only s-wave 
scattering. Let us take into account that the condition 
on the bound state gives 

1 roo p2g2(p) 172 

~ = 417 Jo dp oc2 + p2 = (3(oc + (3)2 . 

The calculations of Do( -k) performed according to 
(3.14), (3.11), and (3.15) lead to 

Do( -k) = (k - ioc)[k + i(oc + 2(3)]/(k + i(3)2, (4.2) 

where oc and (3 indicate the positive determinations of 
the square roots of oc2 and (32. 

(3.16) and (4.2) give 

SoCk) = Do(k) 
Do(-k) 

{(-k - ioc)[-k + i(oc + 2(3)]}/(-k + i(3)2 

{(k - ioc)[k + i(oc + 2(3)]}/(k + i(3)2 

(4.3) 

So we find again that there is only one bound state 
for k = ioc [zero of Do( -k)]. On the other hand 
SoCk) has another pole in the upper imaginary semi­
axis. This one, not being a zero of the denominator of 
(4.3), but a pole in its numerator, does not correspond 
to a bound state. I t is analogous to the false poles or 
Ma poles. 9 

Let us notice that the zero of the denominator of 
(4.3) in k = -i(oc + 2(3) does not correspond to a 
solution of the homogeneous integral Schrodinger 
equation, because by definition, Do( -k) is the 
Fredholm determinant of this equation only if 
1m k > O. This zero therefore corresponds to a 
virtual state. 

The other example is relative to the Hamiltonian 
HM, defined in the following way. 

Let P be the projection operator onto the space 
of the bound states of H = Ho + V, where V is given 
by (4.1) (in this case P is defined by a unique bound 
state), Q = 1 - P the projection operator onto the 
space orthogonal to the space onto which P projects, 
the Hamiltonian H"lI is given by17 

Wlf = H - QVQ = Ho + V M . (4.4) 

The explicit calculation of the projection operators 
P and Q shows that VM is an integral kernel of rank 
two, given by 

, 2 

(pi VM Ip') = - ~ Jl~/Jl(p)gJl(p') (4.5) 

with 

ft(p) = (N 2j).)g(p), gl(P') = g(p')/(oc2 + p,2), 

N2 
g(p) [N2 ] 

f2(P) = T oc2 + p2' g2(P') = g(p') 1 - A(OC2 + p,2) , 

l.. -fd g2(p) 
N 2 - P (oc2 + p2)2 ' 

and the other symbols defined as in the preceding 
example. 

Let us mark with an upper index M the quantities 
that are relative to H"lf. 

The calculation of Dgl(-k), made according to 
(3.14), (3.11), and (3.15)lBleads to 

Doll( -k) = (k - ilX)[k + i(1X + (3) - (1X(3)!] 
x [k + i(oc + (3) + (1X(3)!] 
x [(k + i(3)\k + ilX)r1. (4.6) 

(3.16) and (4.6) give 

SM(k) = {( -k - ilX)[ -k + i(1X + (3) - (oc(3)!][ -k + i(1X + (3) + (OC(3)!]}j 
o [(-k + i(3)2(-k + ilX)] 

{(k - ilX)[k + i(oc + (3) - (1X(3)!][k + i(1X + (3) + (1X(3)!]) 

[(k + i(3)2(k + ilX)] 

We must notice that also in this case the unique 
bound state is in k = i':l., which is a simple zero for 
DgI(-k), while it is a double pole for Sgl(k). There 
exists also a false pole in k = i(3 and two poles of 
SgI(k) in 1m k < 0 in k = -i(':I. + (3) + (1X(3)l and in 
k = -i(1X + (3) - (1X(3)!. 
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17 As far as the purposes of the present discussion are concerned, 
the fact that a Hamiltonian like (4.4) allows us, from the knowledge 
of its bound states, to solve the scattering problem, is of no 
importance. 

18 It can be easily realized that the proof given of (3.14), (3.11), 
and (3.15) also holds true for an interaction like (4.5), for which 
fJl(p) y: gJl(p) (11 = 1,2). 
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. The Einstein-Ma~well equations appropriate to the exterior metric and fields of a source character­
Ized by m.as~, electric ~harge, and magnetic. dipole moment .are formulated. Because of the presence of 
a non~amshmg Poyn~mg vector, the metnc tensor ~ust ~ncIude o~-diagonal elements. A rigorous 
reductIOn of the metnc .tensor to t~re~ unknown functIOns IS accomplished and the field equations are 
solved to second order .m t.he gravitatIOnal. constant. Usi.ng the para~eters of the electron and proton, 
we find that the. magnetic dlpo~e terms dommate the metnc at small distances and that general relativistic 
effec~s beco~e Important at distances of the order of 10-22 cm. Possible applications of the asymptotic 
metnc are discussed. 

I. INTRODUCTION 

Occasionally in the early literature of general rela­
tivity one finds the Reissner-Nordstrom metric! for 
a point charge referred to as the "gravitational field of 
the electron." This was, of course, before the discovery 
of the electron's spin and magnetic dipole moment. 
While the solution of the Einstein-Maxwell equations 
is relatively straightforward in the case of a point 
charge with arbitrary mass, the exact metric for an 
electric or magnetic dipole with mass is unknown2 

and the determination of the exterior metric for the 
"electron," that is, a point charge and magnetic 
dipole moment with mass, is an even more complicated 
problem. 

The purpose of this work is to develop the solution 
of the Einstein-Maxwell equations for this case in 
terms of an expansion in the gravitational constant k. 
The results, presented to order k 2 , provide the asymp­
totic metric and electromagnetic fields of the point 
charge-magnetic dipole, being accurate at suitably 
large distances but not at very small distances. Clearly, 
no light can be shed on the question of metric 
singularities through such a perturbative approach, 
but the magnitude of the gravitational constant is 
such that for the parameters of the electron, proton, 
or neutron (or any known particle with electromagnetic 

• Research sponsored by the Air Force Office of Scientific 
Research, Office of Aerospace Research, U.S. Air Force, under 
AFOSR Contract AF 49(638)-1389. 

t Address after Sel?tember I, 1967: Department of Physics, 
Rutgers, The State UnIversity, New Brunswick, New Jersey. 

~ N.S.F. Predoctoral Fellow. 
1 H. Reissner, Ann. Physik 50, 106 (1916); G. Nordstrom, 

Verhandl. Koninkl. Ned. Akad. Wetenschap. Afdel. Natuurk. 26 
1201 (1918). ' 

2 Sol':itions of the field equations corresponding to an electric or 
magnetic dipole moment are known, but these solutions do not 
contain a mass term. Instead, they contain terms that can be inter­
preted as mass dipoles. The reason is that the solutions are obtained 
by means of Weyl's procedure, which cannot lead to the metric of a 
mass!ve electric or magnetic dipole. See, for example, H. Weyl, Ann. 
PhYSik 54,117 (1917); H. E. J. Curzon, Proc. London Math. Soc. 
23,477 (1925); G. E. Tauber, Can. J. Phys. 35, 477 (1957). 
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properties), the asymptotic metric is accurate to quite 
small distances. 

One application of the approximate metric to be 
developed, and a motivation for this undertaking, is 
the question of general relativistic effects in the energy 
levels of the hydrogen atom or in positronium. The 
generalization of the Dirac equation to curved space­
time is well known3 and all that is required in a first 
approximation to the hydrogen-atom problem is the 
metric of the proton. It is an interesting fact that the 
magnetic dipole moment distorts the metric as much as 
does the charge. For this reason the Reissner-Nord­
strom metric, though much simpler, is inappropriate 
in discussions of the electron or proton. Another pos­
sible application of the metric concerns the extension 
of quantum electrodynamics to Riemannian manifolds. 

The first and most obvious complication in the 
Einstein-Maxwell equations is the fact that the 
electromagnetic fields of a point charge plus magnetic 
dipole moment give rise to a nonvanishing Poynting 
vector. That is, the energy-momentum tensor for the 
electromagnetic fields contains off-diagonal elements 
which lead to the necessity of off-diagonal elements 
in the metric tensor. The simplest metric tensor 
possible seems at first glance to require four unknown 
fun:tions in c?ntrast to the two unknowns of many 
static and aXially symmetric problems. When the 
scalar and vector potentials for the fields are included 
the Einstein-Maxwell equations yield coupled, non~ 
linear partial differential equations in six unknowns. 
It then turns out that one of the four metric functions 
can be expressed in terms of the others. This is a 
nontrivial generalization of the reduction of the 
diagonal axially symmetric metric tensor in special 
cases.4 

3 See, for example, W. Pauli, Ann. Physik 18 337 (1933)' E 
Schrodinger, Berlin Ber. 11, 105 (1932); H. S. Ruse: Proc. Roy. Soc: 
Edmburgh 57, 97 (1937). 

4 J. L. Synge, Relativity: The General Theory (North-Holland 
Publ. Co., Amsterdam, 1960), pp. 309-312. 
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While the possibility of finding exact solutions of 
these equations seems remote, the development of 
power-series solutions in powers of the gravitational 
constant is well defined and straightforward. It is 
necessary first of all to specify the boundary conditions. 
We will insist that the electromagnetic fields vanish 
at infinity and that the metric becomes asymptotically 
flat. (It would be a simple matter to impose a curved 
metric at infinity but we will not pursue this possibility 
here.) We also require that in the limit in which the 
charge and dipole moment vanish the metric reduces to 
the exterior Schwarzschild solution (in cylindrical 
coordinates). Finally, we insist that in the limit in 
which the gravitational constant vanishes the metric 
is everywhere flat and the electromagnetic fields 
become those of a point charge and magnetic dipole 
alone. This eliminates higher electromagnetic multipole 
contributions that could in principle be included. 

In Sec. II a sufficiently general metric tensor is 
formulated and Maxwell's equations and the energy­
momentum tensor are computed. In Sec. III we 
construct the Ricci tensor for our metric and present 
the resulting field equations. We then show that the 
field equations permit one of the metric functions to 
be expressed in terms of others, thus simplifying the 
equations to a small extent. The Einstein-Maxwell 
equations are solved to second order in the gravita­
tional constant in Sec. IV and the three basic lengths, 
associated with the mass, charge, and magnetic dipole 
moment of the source, that characterize the metric 
are evaluated for the parameters of the electron and 
proton. It is shown that in both cases the dipole 
moment terms dominate the metric at small distances 
and that the asymptotic solutions hold down to 
distances of the order of 10-22 cm. Section V is 
devoted to conclusions. 

II. ELECTROMAGNETIC CONSIDERATIONS 

Our purpose in this section is to present the metric 
tensor and the electromagnetic field tensor for the 
point charge-magnetic dipole problem and to derive 
the energy-momentum tensor and the content of 
Maxwell's equations. Because of the axial symmetry 
of the problem we work in cylindrical coordinates 

The metric tensor for this problem is taken to be 

o 
o o 

(1) 

where p, A, v, and ware functions of rand z alone. 
The justification of this form is of course that the 
resulting Einstein-Maxwell equations be well defined. 
The contravariant form of the metric tensor is then 

[r,-' 0 0 

gil" = S-1 ~ 
-se-). 0 

0 -se-;' 

w 0 0 

where the auxiliary function s is defined by 

Finally we note that 

g == det gil" = -se2
;'. 

The electromagnetic four-potential for the point 
charge-magnetic dipole problem can be written in 
this coordinate system as 

All = (<1>,0,0, -"P)' 

where the scalar potential <I> and the vector potential 
"P are functions only of rand z. In the flat-space limit 
these potentials are given by 

ffi 1 2 3 
'V = qX-l!:, "P = flr X-", 

where q is the electric charge, fl is the magnetic dipole 
moment, and we have introduced the convenient 
measure of spherical distance 

(2) 

The covariant form of the electromagnetic field tensor 
(with our sign conventions) is readily seen to be 

-<I> -<I> 0 I r z 

o 0 -"Pr 

o 0 -"Pz' 

"Pr "Pz 0 

where the comma, as usual, denotes ordinary differ­
entiation and the subscripts rand z on the potential 
functions denote partial differentiation with respect 
to those variables. 

By construction, the field tensor satisfies Maxwell's 
"field" equations 

Maxwell's "source" equations 

F~: = -(41T/C)JIl, 

where the semicolon denotes covariant differentiation, 
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can be written in the absence of sources (i.e., every­
where except at the origin) as 

[( - g)tp'J,v = [stelpvl,v = O. 

It is now convenient to introduce some simplifying 
notation. Let a and b be arbitrary functions of, and z. 
We define the operators 

02a = arr + azz = j)2a/o,2 + o2a/oz2, 

(a, b) = arbr + azb., 

[a, b] = arbr - azb., 

{a, b} = arb. + a.b,. 

In this notation the two nontrivial Maxwell's 
equations become 

0 2<1> + 2,-1<1>r - (v, <1» - (s, <I»/2s 

= ,-2eV[w021p + (w, 1p) - w(s, 1p)/2s], (3) 

021p + (p, 1p) - (s, 1p)/2s 

= -e-p [w0 2<1> + (w, <1» - w(s, <I»/2s]. (4) 

To obtain the Einstein equations it is necessary to 
construct the energy-momentum tensor which in our 
conventions is given by 

Tp.v = (411)-\F;Flv + gp.vFlaFla/4). (5) 

The nonvanishing elements of this tensor are com­
puted to be 

Too = (S7TS)-1eP-l[2s(<I>, <I»e-P - ,2(<1>, <I»e-V 

+ 2w(<I>, 1p) + (1p, 1p)eP
], 

Tn = - TZ2 = -(S7Ts)-1[r2[<I>, <I>]e-V 
- 2w[<I>, 1p] 

- [1p, 1p ]eP], 

T33 = (S7TS)-1r2e-l - v[r2(<I>, <I»e-V 
- 2w(<I>, 1p) 

+ 2sr-2
( 1p, 1p)eV 

- (1p, 1p)eP], 

T12 = T21 = -(47Ts)-1[r2<1>r<l>.e-v 
- w{<I>, 1p} -1pr1p.eP], 

T03 = T30 = -(S7TS)-1e-l[r2w(<I>, <I»e-V 

+ 2(s - w2)(<I>, 1p) - w(1p, 1p)eP
]. 

It is readily verified that the trace T = T~ of the 
tensor vanishes as required by the structure of the 
basic definition (5). 

III. GEOMETRICAL CONSIDERATIONS 

With the metric tensor (1) the construction of the 
Ricci tensor Rl'v is a straightforward calculation. The 
nonvanishing elements of this tensor are found to be 

Roo = (2S)-1eP-l[S02p + Hp, s) + w\p, p) 

- 2w(p, w) + (w, w)], 

Rn = _(2s)-1[s02A - HA, s] 

+ (s - w2)prCvr - 2r-1
) + Srr - w; - s;/2s], 

R22 = -(2s)-1[s02A + HA, s] + (s - w 2)P.vz 

+ Szz - w: - s:/2s], 

R33 = (2s)-1r2e-l-v[s02v + 2S,-2 + t(v, s) 

- w2(v, v) - 2w(v, w) - (w, w) - ,-1S, 

+ 4w2,-1(Vr - ,-1) + 4W,-1wr], 

R12 = R21 = -(2s)-1[-HA, s} 
+ Hs - w2){Prvz + p.(vr - 2,-1)} 

+ Sr. - WrWz - srsz/2s ], 

R03 = R30 = (2S)-1e-l[S02w + w(w, w) - tcw, s) 
- w(s - w2)(p, V) + 2wr-\s - w2)Pr]. 

A partial check of these equations against known 
results is afforded by setting w = 0 in which case the 
Ricci tensor reduces to that given by Synge.4 

The Einstein equations with our sign convention 
read 

R/1V - tRg/1v = (S7Tk/c4)T/1v, 

where k is the gravitational constant and R = R~ is 
the curvature scalar. Because the trace of the energy­
momentum tensor vanishes for our electromagnetic 
problem, the curvature scalar must also vanish and 
the Einstein equations reduce to 

R/1v = (S7Tk/c4)Tp.v. 

With the elements of the energy-momentum tensor 
given in Sec. II and the Ricci tensor presented above, 
the field equations are 

S02p + Hp, s) + w2(p, p) - 2w(p, w) + (w, w) 

= (2k/c4)[(s + w2)(<I>, <I»e-P + 2w(<I>, 1p) + (1p, 1p)eP], 

(6) 
S02V + 2,-2S + !(v, s) - W2(V, v) - 2w(v, w) 

- (w, w) - ,-1[sr - 4w2(vr - ,-1) - 4wwr] 

= (2k/c4)[r2(<I>, <I»e-V - 2w(<I>, 1p) 

+ ,-2(S + w2)(1p, 1p)eV], (7) 

S02W + w(w, w) - Hw, s) - w(s - w2)(p, v) 

+ 2r-1w(s - w2)Pr 

= -(2k/c4
) [r2w(<I>, <I»e-V + 2(s _ w2)(<I>, 1p) 

- w( 1p, 1p )eP], (S) 

s02A - HA, s] + (s - w2)PrCvr - 2r-1) + Srr 

- w; - s;/2s 
= (2k/c4

) [r2[<I>, <I>]e-V - 2w[<I>, 1p] - [1p, 1p]eP], 

s02A + HA, s] + (s - w2)P.v. + szz - w: - s;/2s 
= - (2k/c4)[r2[<I>, <I>]e-v' - 2w[<I>, 1p] - [1p, 1p]eP], 

Hs - w
2){p, v} - HA, s} - r-1(s - w 2)P. + sr. 
- WrWz - srsz/2s 

= (4k/c4)[r2<1>r<l>ze-v 
- w{<I>, 1p} - 1pr1pzeP]. 
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The first three equations above, together with the 
Maxwell equations [Eqs. (3) and (4)], are independent 
of the function A and give five equations in the five 
unknowns p, v, w, <D, and 'IjJ. The last three equations 
above, which are not independent, determine A in 
terms of the other functions. 

It is well known4 that if either <D or 'IjJ vanishes so 
that W = 0, then the field equations are satisfied by 
taking v = p. This is the reduction of the axially 
symmetric metric to two unknowns referred to in 
Sec. I. We now ask if a similar reduction is possible 
in the case in which w does not vanish. A clue is 
provided by the observation that the covariant and 
contravariant forms of the metric tensor will be more 
similar if s = r2. This requires 

v = p - In (1 - w2/r2
). (9) 

It is easily shown that with this choice for v the field 
equation for v [Eq. (7)] becomes a linear combination 
of (6) and (8) and so (9) provides a generalization of 
the familiar case. Since the auxiliary function s = r2 
exactly, the field equations can be simplified some­
what. 

Before proceeding to the perturbation-series solu­
tion, it is useful to note the exact exterior Schwarz­
schild solution in this metric. With <D = 'IjJ = 0 the 
solution of the field equations that corresponds to a 
point mass m at the origin and an asymptotically flat 
metric is simply 

per, z) = -2km/c2x!, 
A(r, z) = 2km/c2x! - k2m2r2/c4x2, 

where x is defined by (2). As noted in the Introduction, 
we will insist that the metric for the point charge­
magnetic dipole problem reduces to this metric in the 
limit in which the charge and dipole moment vanish. 

IV. POWER-SERIES SOLUTION 

We write the electromagnetic potentials and the 
metric functions as power-series expansions in the 
gravitational constant and insert these expansions 
into the Einstein-Maxwell equations. The resulting 
equations, together with the boundary conditions, 
yield the following solutions through order k 2 : 

<D(r, z) = !L[1 _ km + kq2 _ kfl2(4r2 - Z2) 
x! c2x! 3c4x 35c4x3 

2k2m2 2emq2 2k2q4 +-----+--
3c4x 3c6x1 15c 8x 2 

k2mfl2(5r2 - 3z2) 4k2q2fl2(7r2 + Z2) + -----"-'---'----'----'-
35c6xf 315c8X4 

2k2fl4( 40r4 
- 502r2z2 - 487 Z4)J 

+ 15015c8x 6 
' 

flr2[ km kq2 k2m2 
'IjJ(r, z) =- 1 + -- + - +-

x~ 2c2x! 5c4x 5c4x 

4k2mq2 11k2q4 k2mfl2(r2 + 11z2) - --- + -- - -...!...-..::.---'-~.....:. 

15c6X~ 105c8X2 21Oc6xf 

_ k2q~2(72r2 - 13z2)J 
1155c8x4 ' 

2km kq2 kfl2Z2 2k2mq2 k2q4 
p(r,z) = --+-+-----+-

c2x! c4x C4X3 3C6X~ 6C8X2 

2k2mfl\r2 - 9z2) k2fl4 Z 4 

+ +--
35c6xf 6C8

X
6 

k2q2fl2(8r2 _ 9z2) 

35C8X4 

w(r, z) = _ kQW2[1 _ 4km + 7kQ2 
C4X2 5c2x! 15c4x 

_ kfl2( 4r2 - 61 Z2)J 
105c4x3 

' 

2km kq2z2 kfl2(r4 - 6r2z2 + 2Z4) A(r, z) = - - -- - --2-~ ___ -'-----'-

C2X~ C4X2 2C4X4 

em2r2 2k2mq2 k2q4 
---+----

C4X2 3C6X~ 6C8X2 

2k2mfl2(r 2 - 9z2) Pfl4Z 4 
---

35c6xf 6C8X 6 

k 2q2fl2(4r2 - 9z2) 

+ 35c8X4 ' 

and to this order from the exact relation [Eq. (9)] 

k 2q2fl2r2 
vCr, z) = per, z) + 8 4 

ex 

In order to see the properties of this asymptotic 
metric more readily for the special cases of the 
electron and proton, it is convenient to define three 
basic lengths, associated with the mass, electric 
charge, and magnetic dipole moment, respectively. 
We define 

Rm = km/c2, R~ = kq2/C4, R! = kfl2/C4, 

and find for the electron the values 

Rm = 6.75 X 10-56 cm, 

Rq = 1.38 X 10-34 cm, 

R" = 5.16 X 10-23 cm. 

The corresponding lengths for the proton are 

Rm = 1.24 X 10-52 cm, 

Rq = 1.38 X 10-34 cm, 

R" = 2.01 X 10-24 cm. 



                                                                                                                                    

ASYMPTOTIC GRAVITATIONAL FIELD OF THE "ELECTRON" 597 

In terms of these lengths, the elements of the metric 
tensor gllv and the potentials to first order in the 
gravitational constant are 

eP = 1 - 2Rm/xl + R;/x + R!Z2/X3
, 

eA. = 1 + 2Rm/xl - R~Z2/X2 
- R!(r4 - 6r2z2 + 2z4)/2x\ 

r2e-v = r2[1 + 2Rm/xl - R~/x _ R!Z2/X3
], 

W = -RqR;r2/x2, 

<I> = (q/xl)[1 - Rm/xl + R~/3x - R!(4r2 - z2)/35x3
], 

1p = (,ur2/x~)[1 + Rm/2x! + R~/5x], 
and the second-order terms are readily computed 
from the second-order solution given above. 

While the "long-range" behavior of the solution is 
dominated by the mass terms, followed by the 
contributions of the charge and magnetic dipole 
moment in that order, it is clear that for the param­
eters of the electron and proton the metric at small 
distances is dominated by the dipole-moment terms. 
At distances of the order of 10-23 cm, the dipole 
terms are of order unity and the power-series ex­
pansion converges slowly, if at all. For distances 
larger than this, the asymptotic solution provides an 
excellent approximation to the metric. Of course, in 
the case of the proton where the internal structure 
sets in at distances of the order of 10-13 cm, the 
"interior" metric will be substantially different in 
character.5 The question of structure in the electron 
is less clear and the asymptotic metric obtained here 
presumably holds to distances much smaller than 
hadron sizes. 

Another feature of the metric concerns the distances 
at which the three contributing factors are comparable 
in magnitude. For the parameters of the electron, the 
mass, charge, and dipole terms are roughly equal at 
distances of 10-11-10-12 cm. For the proton this 
occurs at distances of the order of 10-14 cm. If such 
distances, or smaller ones, are important in an 
application to a physical problem, it is obviously 
necessary to include the dipole terms even though the 
metric is much more complicated than is the Reissner­
Nordstrom solution. 

V. CONCLUSIONS 

We have presented the Einstein-Maxwell equations 
appropriate to the problem of determining the electro-

• For an exact solution of the field equations inside a distribution 
of mass and charge see, for example, C. F. Kyle and A. W. Martin, 
Nuovo Cimento 50, 583 (1967). 

magnetic fields and metric tensor for a point source 
characterized by mass, charge, and magnetic dipole 
moment. The immediate complication in such a 
problem is the existence of a nonvanishing Poynting 
vector which necessitates off-diagonal elements in the 
metric tensor. A sufficiently general parametrization 
of the metric tensor is found to involve four unknown 
functions of the cylindrical-coordinate system variables 
rand z. Together with the two necessary electro­
magnetic potentials, the Einstein-Maxwell equations 
then lead to coupled, nonlinear partial differential 
equations in six unknowns. 

As a result of a general nature, we have indicated 
that one of the metric functions can be solved for in 
terms of the others. This is a generalization of well­
known results for simpler axially symmetric problems 
and simplifies the remaining field equations to some 
extent. The possibility of obtaining exact solutions of 
the equations seems extremely remote, however, and 
we have utilized expansions in powers of the gravita­
tional constant to construct the asymptotic solutions. 
These solutions, presented here through second order 
in the gravitational constant, are characterized by 
three basic lengths associated with the mass, charge, 
and magnetic dipole moment of the source. 

For the physical parameters of the electron and the 
proton, it turns out that the length associated with the 
dipole moment is many orders of magnitude larger 
than the other two lengths and that general relativistic 
effects become important at distances of the order of 
10-22_10-23 cm. For the proton, of course, this is well 
within the internal structure and it seems improbable 
that the curvature of the metric is at all important 
for the proton. The situation for the electron is much 
less clear. It is possible that distances of 10-22 cm are 
important in certain aspects of electron physics and 
that general relativistic effects might lead to observ­
able consequences. 

Possible applications of the asymptotic metric 
developed here are considerations of curved space­
time effects in the energy levels of the hydrogen atom 
or those of positronium. It would be amusing, for 
example, to calculate the general relativistic contri­
bution to the Lamb shift. While it is undoubtedly 
very small, these considerations suggest that it will 
be larger than the usual order-of-magnitude estimates 
indicate. Intimately connected with such applications 
is the extension of quantum electrodynamics to 
Riemannian manifolds. We are hopeful that the 
asymptotic metric of the electron presented here will 
be of use in the further development of the theory. 
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Asymptotic expansions are used to study outgoing gravitational radiation in an expanding, dust-filled 
Friedmann universe of negative curvature. It is found that the interaction with the matter modifies the 
"peeling-off" behavior. A quantity is defined which is interpreted as the total mass of the source and the 
disturbance, and which monotonically decreases as gravitational radiation is emitted. The group of 
coordinate transformations that preserve the asymptotic form of the metric and the boundary conditions 
is the same as the isometry group of the undisturbed Friedmann model. This may indicate that no physical 
significance attaches to the extra transformations of asymptotically flat space which are not contained in 
the inhomogeneous Lorentz group. 

1. INTRODUCTION 

Gravitational radiation in empty, asymptotically 
flat space has been studied by asymptotic expansions 
by a number of authors.l~4 It is found that the Weyl 
tensor, which represents the gravitational radiation 
field, exhibits a behavior known as "peeling-off": 
various different components go as different powers of 
the affine distance. It is also found that the asymptotic 
group, the group of coordinate transformations that 
preserve the asymptotic form of the metric, contains 
not only the lO-parameter inhomogeneous Lorentz 
group, but also certain infinite-dimensional "super­
translations." 5 It has been suggested that these 
might be of significance in connection with elementary­
particle symmetries.6 

Emptiness and asymptotic flatness are reasonable 
approximations in considering regions of the universe 
which are small compared to the Hubble radius. 
However, for cosmological applications one would 
like to study the propagation of gravitational radiation 
over very large distances. One would have to include 
the effects of the presence of matter and of the 
expansion and curvature of the universe and these 
would modify the above results. This is particularly 
important if the asymptotic group has any physical 
significance, since this significance would presumably 
attach to the asymptotic group corresponding to the 
actual universe and not to the one for asymptotically 
flat, empty space. 

It seems reasonable to assume that, on a large 
scale, our universe is described by one of the Fried­
mann models. 7 These are all conformally flat (i.e., 

1 H. Bondi, M. G. J. van der Burg, and A. W. K. Metzner, Proc. 
Roy. Soc. (London) A269, 21 (1962). 

2 R. K. Sachs. Proc. Roy. Soc. (London) A270, 103 (1962). 
3 E. T. Newman and R. Penrose, J. Math. Phys. 3, 566 (1962). 
4 E. T. Newman and T. W. J. Unti. J. Math. Phys. 3, 891 (1962). 
5 R. K. Sachs, Phys. Rev. 128,2851 (1962). 
6 E. T. Newman, Nature 206, 811 (1965). 
7 H. Bondi. Cosmology (Cambridge University Press, New York, 

1962). 

the Weyl tensor vanishes). We shall consider outgoing 
gravitational radiation from a bounded source in a 
model that goes over asymptotically to one of the 
Friedmann models. We shall interpret the Weyl 
tensor as the gravitational radiation field and the 
Ricci tensor as the contribution of the matter to the 
curvature. It is determined by the Einstein equations: 

Rab - igabR = - Tab, 

where Tab is the energy-momentum tensor of the 
matter. At the present epoch of the universe the 
pressure is much less than the density. We shall 
therefore adopt the simplifying assumption of zero 
pressure. Inclusion of a pressure would merely 
complicate matters by introducing essentially non­
gravitational phenomena such as sound waves. 

It can be shown8 that the metric of a Friedmann 
model with zero pressure can be written in one of the 
forms: 

(a) ds2 = .Q2(t) [dt 2 - dX2 - sin2 X(d6 2 + sin2 6 dcp2)], 

.Q = -A(1 - cos t), A < 0; 

(b) ds2 = .Q2(t)[dt2 - dX2 - X2(d6 2 + sin2 6 dcp2)], 

.Q = it 2
; 

(c) ds2 = .Q2(t)[dt2 - dX2 

- sinh2 X(d62 + sin2 6 dcp2)], 

.Q = A(cosh t - 1), A > O. 

The parameter A~l represents the kinetic plus the 
potential energy of the matter. In case (a) it is insuffi­
cient to prevent the universe contracting again to 
another singularity. This case is unsuitable for a 
discussion of gravitational radiation by means of 
asymptotic expansions as one cannot get an infinite 
distance from the source. Case (b) is the Einstein­
de Sitter model in which the energy is just sufficient 

8 S. W. Hawking. Astrophys. J. 145, 544 (1966). This paper 
contains a different approach to gravitational radiation in an 
expanding universe. 
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to prevent the universe contracting again. Norman9 

has used Penrose's conformal technique10 to study 
gravitational radiation in this model. However, he 
encountered a number of difficulties and concluded 
that the problem could be tackled really only by 
integration of asymptotic expansions. We shall 
therefore employ this method. As (b) is a special 
case and is unstable to small perturbations (such as 
gravitational radiation), we shall consider radiation 
in a metric that asymptotically approaches that of 
case (c), where the energy is more than enough to 
prevent the universe contracting again. It will be 
shown that the interaction with the matter modifies 
the peeling-off behavior and that the asymptotic 
group does not contain any supertranslations but is 
simply the isometry group of the undisturbed Fried­
mann model. The quantity analogous to that inter­
preted as mass in asymptotically flat space is found 
to monotonically decrease when there is outgoing 
radiation. 

2. NEWMAN-PENROSE FORMALISM 

We employ the notation of Newman and Penrose,3 
and Newman and Unti4 (referred to as NP and NU, 
respectively). A tetrad {fi', n'", m'", m'"} of null vectors 
is introduced, where 

[Ilmll = n'"m," = 0, 

[Ilnll = 1, mllmll = -1. 
(2.1) 

Then, 
gllV = [llnV + nll[V _ mllmv _ mllmv• (2.2) 

Twelve complex combinations of rotation coefficients 
are defined as follows: 

a = [a;pmam P, 

K = la;pma[p, 

1 -a-p 
/L = -na;pm m , 

-a 13 
'11= -na;pm n , 

- I a 13 - -alP T - a;pm n, 1T - - na;pm , 

€ = tUa;pna[P - ma;pma[p), 

y = -tCna;pl"nP - ma;pm"nfJ), 

IX = tCla;pn"mP - ma;pm"mP), 

j3 = -!(na;plam P - m,,;pm"m
p
). 

3. FIELD EQUATIONS 

(2.3) 

We introduce a family of null hypersurfaces labeled 
by a coordinate u (= Xl) and take I," = u;,"' This 
implies that 

K = 0, P = p, € = -E, T = a + j3. (3.1) 

• D. Norman. Ph.D. thesis, London University. 1964. 
10 R. Penrose, Proc. Roy. Soc. (London) A284, 159 (1965). 

As the coordinate X2, we take the affine parameter 
r: r;)" = 1. The coordinates x3 and X4 label the null 
geodesics in the surfaces of constant u. We take the 
vector n'" to be the other null vector orthogonal to 
the two-surfaces of constant u and r. Then, 

iT = a + j3, fJ = p,. (3.2) 

The vectors m'" and m'" lie in these two-surfaces. We 
may choose them so that € = 0. In these coordinates 
we may express the tetrad vectors as: 

[11 = b~, [Il = b~, 

nil = bf + Ub: + XW', i = 3,4, (3.3) 

m'"=$W. 
These components are related to the rotation coeffi­
cients by 

D$i = p$i + a~i, (3.4) 
where 

DXi = 2T~i + 2f~i, (3.5) 

DU = -y - y, (3.6) 

oXi - Do~i = (fJ + Y _ y)~i + Ui, (3.7) 

b~i - J$i = (p - IXW + (i - j3)~i, (3.8) 

bU = -v, (3.9) 
where 

D = [Il''il = a/or (} = m'"'illl = ~iO/OXi, '" ' 
Do = nll'illl = U%r + a/au + XiO/OXi. 

(3.10) 

The rotation coefficients are related to the components 
of the Ricci and Weyl tensors by 

Dp = p2 + aa + $00' 

Da = 2pa + 'Yo, 

DT = 2Tp + 2fa + 'Y1 + $01, 

DIX = (IX + f)p + j3a + $10' 

Dj3 = j3p + (IX + f)a + 'Y1 , 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

Dy = 2TIX + 2fj3 + Tf + 'Y2 - A + $u, 

(3.16) 

DA - Jf = Ap + afJ + f2 + (IX - P)f + $20' 

(3.17) 

DfJ - Of = fJP + a). + Tf - (a - j3)f + 'Y2 + 2A, 

(3.18) 

Dv - Dof = 2ffJ + 2TA + (y'- y)f + 'Ya + $21' 

(3.19) 

Do), - Jv = (y - 3y - 2fJ»). + (3IX + p)v - 'Y4 , 

(3.20) 
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i5p - ba = pT - (31X - p)a - 'Y1 + <1>01' (3.21) 

i51X - b{3 = f.lp - aA + IXIX + {3p - 21X{3 - 'Y2 

+ A + <1>11' (3.22) 

i5A - "f.l = f.lf + (IX - 3{3)A - 'Y3 + <1>21' (3.23) 

i5y - D..f.l = f.l2 + AX + (y + Y)f.l - 2{3y - iif + <1>22 , 

(3.24) 

i5y - D..{3 = f.lT - ay - (y - Y - f.l){3 + IXX + <1>12' 
(3.25) 

i5T - D..a = af.l + Xp + 2{3T - (3y - y)a + <1>02' 

(3.26) 

D..p - bT = -Pf.l - aA - 2IXT + (y + y)p - 'Y2 

- 2A, (3.27) 

D..IX - by = pI! - (T + {3)A + (y - y - f.l)1X - 'Ya, 

(3.28) 
where 

<1>00 = -lRIXP{IX{P, <1>22 = -lRlXpnlXnP, 

<1>11 = -tRIXP({lXnP + mlXinP), A = Rj24, 

<1>01 = <1>10 = -lRIX/1{lXmP, <1>02 = <1>20 = -lRIX/imlXmP 

m. ;i; _ IR IX /1 'VI2 = 'V2I - - 2 IXp n m , 

and 
'Yo = -CIXPyo{lXmPPmO, 

\u _ C {IX PlY ° 
T I - - IXPyo n m, 

'Y2 = -iCIXPyo(llXnPPnO - {lXnPmYmO), 

IT" C {IX /1 -Y ° T a = - IX/Jyo n m n , 

'Y4 = - CIXPyOnlXmPnY,n°. 

(3.29) 

(3.30) 

We also use the Bianchi identities. In the present 
notation they arell

: 

b'Yo - D'Y1 + D<I>Ol - i5<1>oo 

= (41X - f)'Yo - 4P'YI - T<I>oo 

+ 2P<l>OI + 2 a<l> 10 , (3.31) 

D..'Yo - i50/1 + D'Y02 - i5<1>01 

= (4y - f.l)'Yo - 2(2T + {3)o/I + 3a0/2 

- X<I>oo + 2IX<I>OI + 2a<l>n + P<l>02' (3.32) 

3("0/1 - D0/2) + 2(D<1>n - b<l>lO) + "<1>01 -D..<1>00 

= 3},,'Yo - 9p0/2 - 6P0/1 

- (f.l + 2y + 2y)<I>oo + (4f + 21X)<I>Ol + 4{3<1>1O 

+ 2P<l>11 + 2a<l>20 - 0'<1>02, (3.33) 

11 The author is indebted to R. G. McLenaghan for these. The 
complete Bianchi identities appear in Brandeis Summer Institute ill 
Theoretical Physics, 1964, S. Deser and K. W. Ford. Eds. (Prentice­
Hall, Inc., Englewood Cliffs, New Jersey, 1964), Vol. I, pp. 350-351. 

3(D..'Y I - i50/2) + 2(D<I>12 - i5<1>11) + "<1>02 - D..<I>01 

= 3y% + 6(y - f.l)'Y1 - 9T'Y2 +6a'Y3 

- ii<l>oo - 2y<l>01 - 2X<I>10 + 6T<I>11 

+ (41X + f)<I>02 + 2a<l>21 , (3.34) 

3(b0/2 - Do/a) + D<I>21 - i5<1>20 + 2(b<l>11 - D..<I>10) 

= 6A'Y1 - 9f'Y2 - 6Po/a - 2Y<I>oo +2A<I>01 

- 4y<l>10 + 6f<l>11 + (4{3 + T)<I>20 - 20'<1>12' (3.35) 

3(D..0/2 - i5o/a) + D<I>22 - i5<1>21 + 2(b<l>12 - D..<I>11) 

= 6Y0/1 - 9f.l0/2 + 6({3 - T)'Ya + 3a'Y4 -2Y<I>01 

- 2ii<l>10 + 2f.l<l>11 + 2A<I>02 - X<I>20 + 41X<I>12 

+ 2({3 + 2T)<I>21 - P<l>22 , (3.36) 

<5'Ya - D0/4 + <5<1>21 - D..<I>20 

= 3A0/2 - 2(1X + 2f)o/a - P0/4 - 2y<I>1O + 2A<I>l1 

+ (2y - 2y + f.l)<I>20 + 2(f - 1X)<I>21 - 0'<1>22' 

(3.37) 

D..o/a - i50/4 + b<l>22 - D..<I>21 

= 3y0/2- 2(y + 2f.l)o/a + (4{3 - T)0/4 - 2Y<I>11 

-ii<l>20 + 2A<I>12 + 2(y + f.l)<I>21 - f<l>22 , (3.38) 

D<I>11 - b<l>lO - "<1>01 + D..<I>oo + 3DA 

= 2(y + y - f.l)<I>oo - (21X + f)<I>01 - (2IX + T)<I>1O 

+ 4p<l>l1 + 0'<1>02 + a<l>20' (3.39) 

D<I>12 - i5<1>11 - <5<1>02 + D..<I>01 + 3i5A 

= (2y - 3f.l)<I>01 + ii<l>oo - X<I>IO 

+ 2(P - 1X)<I>02 + 3p<l>12 + a<l>21' (3.40) 

D<I>22 - b<l>21 - <5<1>12 + D..<I>11 + 3D..A 

= y<l>01 + ii<l>lO - 4f.l<l>11 - }"<I>02 - X<1>20 

+ (f + 2{3)<I>12 + (T + 2P)<I>21 + 2P<l>22' (3.41) 

4. THE UNDISTURBED METRIC 

We may express the undisturbed metric (c) as 

ds2 = Q2[ -du2 + 2du dt 

- (l + E~) sinh2 (t - u)d ~d~], (4.1) 

where u = t - X, ~ = x3 + ix\ and x 3 , X4 are 
stereographic coordinates. We calculate r, the affine 
parameter, from P = dx'1.jdr = g'1.pu:fl . This gives 

r = fQ 2 dt' + B(u, x3
, x 4

). (4.2) 

Normally B would be chosen so that r = 0 when t = u. 
However, in our case it is more convenient to 
take it to be zero. This means that surfaces of constant 
r,are surfaces of constant t. This may seem rather odd 
but it should be pointed out that the choice of B 
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will not affect the asymptotic order of quantities. It 
proves easier to perform the calculations with this 
choice of B but all the results could be transformed 
back to a more normal coordinate system if desired. 

From (4.2), 

r = A2[i sinh 2t - 2 sinh t + ttl. (4.3) 

The matter in the universe is assumed to be pressure­
free, so its energy-momentum tensor may be written 
as Tab = r; Va Vb' where r; is the density of the matter 
and Va its velocity. For the undisturbed metric,S 

r; = 6AO-3, Va = Ot;a. (4.4) 

Now, 

o = 2!s + A - 3A2[2(2)!s]-110g s + O(S-l), (4.5) 

where S2 = r. Therefore, if we tried to expand r; as a 
series in s, the result would be very messy and would 
involve terms of form s-m logn s. This would not 
invalidate it as an asymptotic expansion, but would 
make it very tedious to handle. For convenience, 
therefore, we perform the expansions in terms of O(r) 
which we define to be the same function of r as it is in 
the undisturbed metric. That is, 

o = A(cosh t - 1), 

where t is related to r by (4.3). Then, 

dOjdr = 0-1(1 + 2AO-1)! 

= 0-1(1 + AO-1 - lA20-2 + tA30-3 

(4.6) 

- tA40-4 + iAsO-s - ... ). (4.7) 

As the pressure is zero, the energy-momentum 
tensor and hence the Ricci tensor have only four 
independent components. We shall take these as A, 
<1>00' <1>01 (since <1>01 is complex it represents two 
components). In terms of these, the other components 
may be expressed as 

<1>11 = 3A + <1>001<1>01 <1>01' 

<1>22 = 36N<I>oo\1 + kA -1<1>0;:-<1>01 <1>01)2, 

<1>12 = <1>21 = 6A<I>Ol<1>ool(1 + k~-l<1>o;<I>Ol<1>01)2, (4.8) 

<1>02 = <1>20 = <l>ool<1>~l' 

For the undisturbed metric, 

A = iAO-3, <1>00 = 3AO-S, <1>01 = O. (4.9) 

5. BOUNDARY CONDITIONS 

We wish to consider outgoing gravitational radia­
tion from a bounded source in a metric that asymp­
totically approaches the undisturbed metric described 
above. By analogy with the asymptotically flat case,3.4 

we would expect 'Y 4 to represent the radiation field 
and to be 0(r-1). The Ricci-tensor components, A 
and <1>00 should have their undisturbed values plus 
terms of smaller order. To determine these orders 
and those of <1>01 and 'Yo, there are two ways in which 
we may proceed. We may try to find the smallest 
orders that will permit a general radiation field 'Y4 of 
order r-1• Larger-order terms than these turn out to 
have their u derivatives dependent only on themselves 
and not on the ,-1 coefficient of the radiation field. 
They thus represent disturbances not created by the 
radiation field and so are not considered in this paper. 

Alternatively, we may proceed by a method of 
successive approximations. We take the undisturbed 
values of the rotation coefficients and use them to 
solve the Bianchi identities as field equations for the 
Weyl tensor using the asymptotically flat boundary 
condition3 'Yo = o (,-S). Then, substituting these 
values of the Weyl tensor in Eqs. (3.4)-(3.28), we 
calculate the disturbances induced in the rotation 
coefficients and, using these in Eqs. (3.39)-(3.41), we 
calculate the disturbances in the Ricci-tensor com­
ponents. We then substitute them back in the Bianchi 
identities (3.31)-(3.38) and calculate the corrections 
to the Weyl-tensor components. Further iteration does 
not affect the orders of the disturbances. Both these 
methods indicate that the boundary conditions 
should be 

A = tAO-3 + 0(0-7), (5.1) 

<1>00 = 3AO-s + 0(0-9), 

<1>01 = 0(0-7), 

'Yo = 0(0-7). 

(5.2) 

(5.3) 

(5.4) 

We also assume that these terms are uniformly 
smooth3•s: Differentiation by 0 lowers the order by 
one power of 0 and differentiation by Xi (i = 3, 4) 
leaves the order unchanged. It is shown that if these 
boundary conditions hold on one null hypersurface 
u = uO, they hold on succeeding hypersurfaces and 
that these conditions are the most severe to permit a 
general radiation field 'Y4 of order ,-1. 

6. INTEGRATION 

The procedure is similar to that employed in NP 
and NU. We first integrate the equations involving 
radial derivatives and then use the remaining equations 
to establish relations between the "constants" of 
integration. The actual calculations are rather tedious 
though fairly straightforward. Only the main points 
are given. 

We start by integrating Eqs. (3.11) and (3.12) in a 
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similar manner to NP: 

p = _ 2Q-2 _ AQ-3 + pOQ-4 

+ (tA2 - 2A pO)0-5 + (-5A4/4 + 4A2pO 

-t(p0)2 - taOBO)Q-6 + 0(0-7), (6.1) 

a = aOQ-4 + 0(Q-5), (6.2) 

where pO(u, Xi) and aO(u, Xi) are constants of integra­
tion. Unlike NU, we cannot make pO zero by the 
transformation " = , + pO since this would upset 
the boundary conditions (5.1) and (5.2). 

By Eqs. (3.4), (3.13), (3.14), (3.15), (3.31), and the 
lemma used in NP, it follows that 

'1"1 = 0(Q-7), 

T = TOO-4 + 0(0-5), 

$i = $iOO-2 _ A $iOO-3 + i(3A2$iO 

(6.3) 

(6.4) 

- pO;iO _ ~iOaO)0-4 + 0(Q-5), (6.5) 

oc = f - fJ = OCOO-2 - AocOQ-3 + i(3A2ocO - pOoco 

+ fioBo + TO)0-4 + 0(0-5). (6.6) 

We use the lemma again with Eqs. (3.17), (3.18), 
(3.33), and (3.39) to show that 

'Y2 = 3A(tA2 + {to - t pO)Q-5 + 0(Q-6 10g Q); 

(6.7) 

Ii, = li,0Q-2 - A(Ii,° + tBO)Q-3 + 0(Q-4), (6.8) 

Using this in Eqs. (3.18) and (3.36), we have 

'1"2.1 = 0(Q-5), {t.1 = 0(Q-2). (6.17) 

Then by the Q-1 term of Eq. (3.24), 

(6.18) 
This gives 

U = tQ2 + UO - A(A2 + 2{t° - pO)O-l 

+ O(Q-2}og 0), pO = O. (6.19) 

From the orthogonality relations (2.1) and (2.2), 
we have that 

gii = -ai~i + ~i;i), (i,j = 3,4) 

= _aiO~iO + ~iO;;O)0-4 + 0(0-5). (6.20) 

As in NU, the coordinates x3 and X4 may be chosen 
so that the leading term in gO is a conformally flat 
metric: 

gii = _2pj5(5iiQ-4 + o (Q-5) , (6.21) 

where P(u, Xi) = ;03 = -i;04. This leaves the co­
ordinate freedom ,,= feu, 0 where ~ = x3 + ix'. 
We may use this to make XiO zero since by Eq. (3.7), 
X30 + iX40 is an analytic function of ~. We also have 
from (3.7) that yO = -t and that P = (2)-!AQ(x i)eU

• 

To obtain agreement with the undisturbed metric (4.1), 
we take Q to be (1 + H~). Then, 

OCO = (2)-fAt {to = -tA2(1 + e2U). 

{t = tAQ-1 + {tOQ-2 - A(5A2/4 + 4{t° - pO)Q-3 We now have from Eq. (3.39) that 
+ 0(Q-4 log Q). (6.9) 

Then by Eqs. (3.5), (3.6), (3.16), (3.35), and (3.40), 

':1"3 = 'Y~Q-4 + 0(0-5
), (6.10) 

Xi = XiO + 0(0-4), (6.11) 

y = yO _ tAQ-1 + tA2Q-2 

- A(!A2 + {to - t pO)0-3 + 0(0-4), (6.12) 

U = -i(yo + ,,°)02 + 0(0). (6.13) 

By Eq. (3.9), p = 0(1). Then, 

<1>00.1 = 0(0-5
), A.l = 0(Q-5), 

<1>01.1 = 0(0-5), ':1"0.1 = 0(0-7
), 

'Y1.1 = 0(0-7
), P.1 = 0(0-3

), (6.14) 

a,l = a~10-4 + 0(0-5
), 

T.1 = TXO-4 + 0(0-5
), 

where a comma indicates partial differentiatiori. 
Therefore, by Eqs. (3.19) and (3.37), 

p = pO + 0(0-2
), (6.15) 

<1>00.1 = HO-7 + 0(Q-8), 
where 

H = J-A(5UO - A2 + 2po + A 2e2U). (6.22) 

If we make the coordinate transformation 

" = , + 2(15A)-IL: H du", (6.23) 

then H' = O. This transformation does not upset the 
boundary conditions (5.1)-(5.4) on the initial hyper­
surface u = uO. It means that on succeeding hyper­
surfaces we choose the zero of r so that <1>00 = 3AQ-5 + 
O(O-B). Then by the Q-4 and Q-5 terms in Eq. (3.27), 

pO = tA2(1 - e2U), UO = O. (6.24) 

Then, 

We now have 

<1>00.1 = 0(0-9
), A.1 = 0(0-7

), 

<1>01.1 = 0(0-7
), 'YO.1 = 0(0-7

). 

(6.25) 

(6.26) 

(6.16) Therefore, if the boundary conditions (5.1)-(5.4) hold 
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on one null hypersurface, they will hold on succeeding 
hypersurfaces. The peeling-off behavior is 

'F4 = 0(r-1), 'F3 = 0(r-2), 

'F2 = 0(r-3), 'F1 = 0('-%)' (6.27) 

'F ° = O(r-~). 

The difference between this and the behavior in empty, 
asymptotically flat space is in the last two terms. It 
seems to be caused by the interaction with the matter. 

Expressing the remaining quantities in terms of 
aO we have 

AO = t(0'~1 - 0'0), ~ = 2Ao - A?I' 
T° = ip3V(aOp-2), 'F~ = -iP3V(AOp-2), 

'F~ - ~ = p2V(TOp-l) - p2V(fop-l) + O'0'x0 _ aOAo, 

(6.28) 
where 

v = %x3 + i%x4
; 

'F~ + iJi'~ is undetermined. 

The time derivatives (6.26) all depend on aO. Thus the 
boundary conditions (5.1)-(5.4) are the most severe 
to permit a general radiation field 'F~. The quantity 
AO is analogous to the Bondi "news" function.1.2 

7. THE ASYMPTOTIC GROUP 

The metric has the form 

gIl = gli = 0, g12 = 1, (i,j = 3,4), 

g22 = 02 + 0(0-2), g2i = 0(0-4), (7.1) 

gii = _2P2bii(0-4 - AO-5) + 0(0-6). 

The asymptotic group is the group of coordinate 
transformations that leaves unchanged the above 
form and that of the boundary conditions (5.1)-(5.4). 
It can be derived most simply by considering the 
infinitesimal transformations generated by a vector 
field kCJ.: 

Then the Lie derivatives of the components of the 
metric and the Ricci tensor must be 

[gla = 0, [g22 = 0(0-2), 

[g2i = 0(0-4), [gii = 0(0-6), 

[A = 0(0-7), [<1>00 = 0(0-9), 

[<DOl = 0(0-7). 

From these it follows that 

k1 = kOl(Xi), k 2 = 0(0-2), 

ki = kOi(xi) + 0(0-2), 

(7.2) 

(7.3) 

and where kl and k 2 are determined by kOi. By (7.4), 
k03 + ik04 is an analytic function of ~ (this is a 
consequence of the fact that we have reduced the 
leading term of gii to a conformally flat form). It 
follows that ~O/, the leading term in ~/, is an analytic 
function of ~ in the finite transformations generated 
by k"-. As ~Ol must have one zero and one pole, it is 
given by 

~O' = (a~ + b)/(e~ + d), ad - be = 1. (7.5) 

The transformations of u and r are determined by 
the six real parameters in (7.5). Thus the asymptotic 
group is isomorphic to the Moebius group. This is 
isomorphic to the homogeneous Lorentz group. 
However, it is also isomorphic to the isometry group 
of a three-surface of constant negative curvature 
which is the isometry group of the undisturbed 
Friedmann model. Thus the asymptotic group is the 
same as the group of the undisturbed space. There are 
no supertranslations as in asymptotically flat space. 

8. THE MASS 

Let F and n" be, respectively, the outgoing and the 
ingoing null vectors orthogonal to a spacelike two­
sphere S and let rn(1. and m"- lie in S. The quantity 

! 
M(S) = (47T)-~ (f dS) f (-'F2 - aA + <1>11 + A) dS 

(8.1) 

is uniquely defined. (7T here has its usual meaning.) By 
the Gauss-Bonnet theorem [derivable from Eq. (3.22)], 
M(S) is also equal to (47T)-!(S dS)!(27T - S ftP dS). If 
we move each point of S an equal distance dr out 
along the null vectors 1"- = dx"-/dr, then 

dM/dr = (47T)-tt (f dS/{ - (f dsf (f p dS) 

x J (-'F2 - aA + <1>11 + A) dS 

-f {ftC aO' + <1>00) - (~ + P)bp 

+ p[aA + (oc +" fJ)(~ + p) + 'F2 + 2A]} dS}. (8.2) 

If we choose the scaling of /" so that r is a luminosity 
parameter (i.e., p = r-1 and IdS = 47Tr2), then 

dM/dr = (47T)-lf [-ftr(aO' + ~oo) 

+ (~ + p)(oc + fJ) + <1>11 + A] dS. (8.3) 

where 

k?: = -k?i, 
k?: = k?i, 

We may regard the Ricci-tensor terms <1>00' <1>11' and 
A as representing the mass-energy density of matter 

(7.4) crossing the outgoing null hypersurface and the term 
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(fij as representing the energy density of incoming 
gravitational radiation.12 Thus we may interpret M, 
the limit of M as r -->- 00, as the total mass of the 
system. In asymptotically fiat, empty space, M coin­
cides with the definition of mass given by Bondi.1 

Moving each point of S an equal distance u along the 
null vectors n,t, one gets the conservation law 

- = _(417)-1 hm AA dS. dM . f-
du r-oc 

(8.4) 

This shows that M monotonically decreases at a 
rate given by the news function A. 

In our case M will be infinite since a sphere of 
infinite radius will enclose an infinite amount of 
matter. We may divide into MI which is given by the 
Ricci-tensor terms <P11 and A, and M2 which is given 
by the terms '1"2 and (fA. In the undisturbed metric, 
MI is infinite and M2 is zero. We may regard M2 as 
representing the mass of the source plus the mass of 
the disturbance. It is given by 

M2 = -(817Ar1e-uf p-2('F~ + (1°AO) dx3 dX4. (8.5) 

It obeys the conservation law (8.4): 

dM21du = -(417A)-Ie- U f p-2A°).0 dx3 dX4. (8.6) 

We may generalize this to obtain a conservation law 
for energy and momentum. I3 Define :r(~) to be the 
right-hand side of Eq. (8.5) where the integrand has 
been multiplied by a weighting function W(~)(Xi) 

which satisfies 

(8.7) 

(8.8) 

There are four independent solutions of (7.7). They 
may be chosen as 

W(O) = 1, W(I) = , + ~ 
2(1 + 1a)' 

W(2) = , - ~ W(3) = 1 - H~ 
2i(1 + g,r 1 + gr 

(8.9) 

1" R. Penrose. in Perspectives ill Geometry alld Relativity, B. 
Hoffman, Ed. (Indiana University Press, Bloomington, Indiana, 
1966), pp. 259-274. 

13 R. Penrose, Phys. Rev. Letters 10, 66 (1963). 

We may regard the (f(~) as the components of the total 
energy-momentum vector of the source and the 
disturbance. 

9. OBSERVATION 

An observer moving with the matter would find 
that the frequency was red shifted by a factor O. 
The red shift would also reduce the apparent intensity 
in his local frame. By measuring the relative accelera­
tions of neighboring particles, he may determine 
RIXIJyo V"-VY, where VlXis his velocity vector. The trace­
free part of this represents the "electric" components 
of the gravitational radiation: 

In the observer's orthonormal tetrad e~ (a = 1,2, 3,4) 
in which e~ = VIX, e~ = (Vp/p)-I/" - V"', ea = 
(2)-t(m'" + Iii"'), and e~ = (2)-!j(m'" - m"'), 

0 0 0 0 

0 -2G E F 
Eab = 

0 E G-C D (9.1) 

0 F D G+C 
where 

C + iD = 'F~0-4 + 0(0-5
), 

E + iF = -(2)hI10-5 + 0(0-6
), (9.2) 

G = 2('F~ + 'Y~)0-6 + 0(0-7
). 

The dominant 0-4 terms represent the two polariza­
tions of a spin-2 wave. The effect of the redshift is to 
compress the apparent peeling-off behavior. The '1"1 

and '1"0 components give, respectively, an 0-6 term of 
type similar to that given by '1"3 and an 0-5 term 
similar to '1"4 . 

The asymptotic expansions used should be reason­
able approximations provided that 0 is large compared 
to A and to the value of 0 at the source. The first 
condition is satisfied at the present epoch if the 
average density of the universe is just that of the ob­
served luminous matter (about 10-31 g/cc). The second 
is satisfied for sources of large redshift (z» 1). For 
nearer sources the behavior approximates that of 
asymptotically flat space. 
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Th~ devel~pment of the time-t~anslation .operators i~ a matrix element of an arbitrary operator is 
~xammed. It IS noted that we may mterpret tIme as evolvmg from some remotely early time (to) to a time 
m the far future (roc) and then back to (to). Using thisinterpretation,aperturbationexpansion is developed 
for Green's functions defined along this path and a separation of the two-particle interaction terms into 
self-ene~gy parts a~d single-particle Green.'s function terms. is justified for quantities on this path. A 
connectIOn IS establIshed between the real-tIme Green's functIOns and the Green's function defined along 
the path, thereby yielding a perturbation expansion for the real-time functions and a justification of the 
separ~tion of the interaction terms in the equations of motion for the real-time quantities. The transport 
equatIOns of Kadanoff and Baym are derived without resorting to an analytic continuation from imag­
inary times and without the correction terms of Fujita. 

1. INTRODUCTION 

In order to consider transport properties of many­
body systems from a microscopic point of view, it is 
appropriate to work with Green's functions defined 
for real times. Kadanoff and Baym, l using an analytic 
continuation procedure of Baym and Mermin,2 
have derived equations of motion for the real-time 
functions. This approach suffers from certain weak­
nesses. It is not altogether clear that the separation 
of the two-particle correlation function into real-time 
single-particle functions and self-energy terms is in 
fact justified for this situation. In addition, it is 
difficult to derive expressions for the self-energy 
functions directly without recourse to the analytic 
continuation procedure outlined in Kadanoff and 
Baym. A method for writing down the general 
expressions for such functions can be derived,3 but is 
itself not convenient for investigating the exact 
functional dependence of such quantities on the 
interparticle potential and the single-particle Green's 
functions. 

Fujita,4 using a diagram technique, has investigated 
systems in the absence of external fields and developed 
equations similar to those of Kadanoff and Baym but 
with correction terms. These corrections involve 
initial-particle correlations which Fujita ~laims die 
out in a time of order the collision time of the particles. 
Clearly this cannot be the entire story, since if, for 
instance, the system is initially in a single quantum 
state, the information of initial-particle correlations 
will be preserved, in principal, indefinitely. Indeed 

• Work supported by the National Science Foundation. 
t Present address: Department of Physics, University of Cali­

fornia, Riverside, Calif. 
1 L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics 

(W. A. Benjamin, Inc, New York, 1962). 
• G. Baym and D. Mermin, J. Math. Phys. 2, 232 (1961). 
3 R. A. Craig, Ann. Phys. (N.Y.) 40, 416 (1966). 
4 S. Fujita, J. Math. Phys. 6, 1877 (1965). 

such long-lived correlations are observed in spin­
echo experiments in which the system initially is 
describable not by a single quantum state but rather 
by an appropriate nonequilibrium ensemble. 

The purpose of this work is to remedy the weak­
nesses of the approach of Kadanoff and Baym, and to 
include the possibility of initial-particle correlations.5 

A formalism is developed in which it is possible 
to demonstrate the separation of the potential-energy 
term in the equation of motion of the real-time 
Green's functions into self-energy and single-particle 
functions. In addition, this approach gives a method 
for writing down these self-energy functions directly. 

The formalism derived in this work is similar to that 
developed by Mills6 for equilibrium situations in that 
the final equations are matrix functionals of the time­
ordered, anti-time-ordered, advanced and retarded, 
real-time Green's functions. However, here only real 
(physical) times are considered; no analytic continua­
tion from imaginary times is needed. We consider 
the system of fermions interacting instantaneously 
among themselves-the generalization to include 
other systems is obvious. 

The approach used here is to work directly with the 
real-time functions and their equations of motion. 
By considering the behavior of the time-development 
operator, it is shown that it is appropriate to consider 

5 After the completion of this work, the author's attention was 
brought to the paper of L. V. Keldysh {Zh. Eksp. Teor. Fiz. 
47,1515 (1964) [Sov. Phys.-JETP 20,1018 (I965)]} in which some 
of the formalism developed here was derived independently. 
Keldysch ignores the possibility of initial-particle correlations and 
prepares the system ~ith an equilibrium-density matrix for infinitely 
early tImes so that hIS work is subject to the same criticism as that 
of Kadanoff and Baym. In addition Keldysh, in doing his perturba­
tion expansion, makes the rather inconvenient choice of time 
t = 0 for the operators to reduce to those in the absence of inter­
particle interactions. 

6 R. Mills (to be published). An equilibrium approach similar to 
that of Mills has been used [V. Korenman, Ann. Phys. (N.Y.) 39,72 
(1966): Phys. Rev. 154, 1233 (1967)] to discuss the laser-photon 
system. 
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the system as evolving along a path in time which runs 
from the time I = - 00 to a time I = 00 and then 
back to I = - 00. This is done in Sec. 2. Such a path 
lends itself naturally to a matrix description in which 
the matrix components are related to real-time 
functions. In this description, a perturbation expansion 
is developed for the propagator. In Sec. 3, the usual 
arguments are applied to generate a Dyson equation 
for the matrix propagator, in this way justifying the 
separation of the two-particle correlation terms in the 
equation of motion for the single-particle Green's 
function into products of Green's functions and self­
energy parts and incidently giving a perturbation 
expansion for the self-energy functions. 

2. JUSTIFICATION OF PATH APPROACH 

Before considering the specific case of the real-time 
Green's function, we consider the example of a matrix 
element of an arbitrary operator 0: 

0 mn(/) = (m, II 0 In, I), (2.1) 

where the states 1m, I), In, I) are in the Schrodinger 
picture and obey the equations of motion 

i i 1m, t) = Hlt) 1m, t). ot (2.2) 

Equation (2.2) may be solved (in a formal sense) in 
terms of the time-translation operator7 

(2.3a) 
where 

(2.3b) 

If we choose to as some 'remotely early time before 
which all external fields vanish (eventually we choose 
to = - 00),8 then the states are those of a field-free 
system. We have 

The time translations in Eq. (2.4) can be interpreted 
in the following way: The states 1m, to>, In, to> are 
prepared at (to) and allowed to develop under the full 
Hamiltonian. At time (t), the expectation value of the 
operator is taken between those states which have 
developed from 1m, to> and In, to>. 

An alternative interpretation of the time translations 
in Eq. (2.4) can be made. We allow the system, 
initially in the state In, 10 >, to develop to (t); at time 

7 See, for instance, S. S. Schweber, Relativistic Qualltum Field 
Theory (Row, Peterson and Company, Evanston, Illinois, 1961), 
pp. 316ff. 

8 This limit does /lot restrict us to the situation in which the 
external field is turned on in the very remote past, but only that the 
external field be turned on after to = -00. 

(I) we operate on the system with the operator 0 and 
then we allow time to develop backwards, returning 
to (to). At (to) the projection of the resulting state on 
1m, to) is measured. The former interpretation is more 
meaningful physically; the latter provides the concept 
on which this work is based. 

Because of the group property of the time-develop­
ment operators,7 Eq. (2.4) may be rewritten 

0 mn(t) = (m, tol cu,(to, ta)cu,(ta' t) 

X tYll(t, to) In, to), (2.5a) 

where we can take (t,l) as some latest time after which 
all external fields vanish (eventually la can go to (0). 
If the matrix element which we are considering is a 
diagonal element, and if the state is nondegenerate, 
then by inserting a complete set of states and using the 
fact that an interaction switched on adiabatically can 
cause no transitions between levels, we get 

0 mm(t) = (/11, tol cu,(to, ta) 1m, to> 

X (m, tol cu,(ta' t)0"lL(t, to) I In, to> 

= ei<P(m, tol cu,(ta' t)0"lL(t, to) 1m, to) 

(m, tol cu,(ta' to) 1m, to> 
(2.6) 

for adiabatically slowly varying external fields. It is by 
this reasoning that, in the usual zero-temperature 
theory, time evolution from t = - 00 to t = + 00 

may be considered. 9 

However, in general, we consider states which may 
be degenerate with others, and external fields which 
may cause transitions between levels, so that the 
above arguments are inappropriate. We are therefore 
constrained to a temporal evolution which runs from 
(to) to (fa) and then back to (to). 

The choice of where (t) comes in Eq. (2.5a) is not 
unique; alternatively we could have written 

Equation (2.5b) describes a situation in which the 
state In, 10> is allowed to develop from (to) to (ta) and 
then back to (t); at this time, the operator 0 acts 
and the state is allowed to develop to (to). At (to) the 
projection of the resulting state on the state 1m, to> 
is taken. 

9 There exist serious questions about the validity of using the 
usual zero-temperature theory for physical problems. These involve 
the order of taking the zero temperature and the thermodynamic 
(volume --+ 00) limits. For correct results, the volume should go to 
infinity first, in which case the near degeneracy of states close to the 
ground state becomes important. The method used here, it should 
be noted, can be used when the states involved are degenerate so that 
all such difficulties are avoi.ded. 
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The two situations described by (2.5a) and (2.5b) 
are, of course, identical. However, if we suppose that 
time development in the forward time direction is 
governed by different laws than time development in 
the reverse direction, then the situations are no longer 
the same.1° The matrix elements emn(t) depend 
on which direction the time (t) is evolving. One 
method of generating a dynamics, which depends on 
the direction of temporal development, is to introduce 
an external potential which possesses this property. 
In this case, for instance, the equation of motion of 
a field operator whose Hamiltonian in the absence of 
external fields is 

Id3 V 1p \r) . V 1p(r) 
H = r ---'----'-"'------'-'--'-

2m 

+ ~ I d3r d3r'V(r, r')1p t(r)1p t(r')1p(r')1p(r) (2.7) 

would be, upon introducing the external field, 

a I y2 i - 1p(r, t) = - - 1p(r, t) at ± 2m 

+ I d3r'V(r, r')1pt(r', t)1p(r', t)1p(r, t) 

+ I d3r' U ±(r, r')1p(r'), (2.8) 

where the ± refers to the direction of temporal 
development. It should be emphasized that introducing 
external fields which differ for time development in 
the forward and reverse time directions is a book­
keeping artifice. We shall always be concerned only 
with the physical situation when the fields are the same. 

3. PERTURBATION EXPANSION OF GREEN'S 
FUNCTIONS 

Before proceeding to develop the ideas of the 
preceding section further, we wish first to make some 
observations on actual experimental arrangements. 
Before applying the external field to produce the 
nonequilibrium conditions, we start with a system 
which is not, in general, in a definite eigenstate. 
Instead the system is in thermal equilibrium with its 
surroundings at a time which we shall call 1 p' This 
system is then isolated (in principle) from the outside 
world and the experiments performed. Alternatively, 
we prepare the system in some nonequilibrium situa­
tion, isolate the system, and perform the experiments. 
In either case, the statistical expectation value of an 
operator at some later time is given by 

(e(t» = L PiiU, tpl e(t) Ii, tp). (3.1) 
i,j 

10 J. Schwinger, J. Math. Phys. 2, 407 (1961). 

Here Pij are the matrix elements of the initial-density 
matrix in the representation of eigenstates of the 
Hamiltonian in the absence of the external field 
Ii, t fJ ). The operator (jet) and the time-independent 
states Ii, tp) are defined in the Heisenberg representa­
tion. Fujita expands the density matrix in states of the 
noninteracting system. The correction terms he 
describes have their origin in cross terms between 
this expansion and the perturbation expansion of the 
time-development operators. As we see, expressing 
the initial-density matrix of the system in terms of the 
exact eigenstates of the undisturbed system preserves 
initial-particle correlations without Fujita's added 
terms. 

We are interested in the single-particle Green's 
function 

Here T denotes the conventional time-ordered 
product in which earlier times are ordered to the right 
with the appropriate change of sign for permutations 
of fermions. When we use field operators which are 
sensitive to the direction of temporal development, as 
are those defined by Eq. (2.8), we must distinguish 
between those times which are developing in the 
forward and those which are developing in the reverse 
sense. A more fruitful approach in this case is to 
introduce the quantity G(l, 2) defined by 

iG(l, 2) = (P1p(1)1p t (2», (3.3) 

where P denotes an ordering of the operators along 
the temporal path which runs from (to) to (ta) and back 
to (to), and includes a minus sign for each permutation 
of fermion operators necessary to achieve the proper 
ordering. The times to(ta) now represent times before 
(after) which the interparticle interactions vanish. 
The function G(l, 2) contains, as we shall see, all the 
information on g(l, 2), plus additional information 
on the analytic parts of g(l, 2) andg(l, 2) the anti-time­
ordered function. By including the additional informa­
tion in G(l, 2) it' is possible to separate the equations 
of motion for g(l, 2) and develop closed forms for the 
self-energies. Let us consider, for example, the 
situation when 11 is developing in the forward direction 
and 12 in the backward. We are then concerned with 
matrix elements like 

(), 1pl1pt(2, -)1p(I, +) Ii, tp) (3.4) 

which appear in the statistical average. In order to 
develop a perturbation expansion for quantities of this 
form, we separate the Hamiltonian into a part 
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appropriate to a noninteracting system Ho + Hext 
and a part containing the interparticle interaction 
(Hint). Having made this separation, it is now 
appropriate to introduce the interaction representation 
in which operators develop according to the Hamilton­
ian in which interparticle interactions are neglected 

ae 
i _r = [er , (Ho + Hext)d, (3.5) at 

for an arbitrary operator e. In this representation, the 
matrix elements (3.4) can be writtenll 

(j, tpl 'U(tp, t2)lPi(2)'U(t2' ta)'U(ta, t1)lPI(1) 

X 'U(tl' tp) Ii, tp) 

= (jotol 'U(to, t2)lPi'U(t2, ta)'U(ta, t1)lPI(1)(t1 , to) Ii, to), 

(3.6) 
where 

and 

- i ~ 'U(t1 , t2) = 'U(t1' t2)[Hint(t2)h. (3.7b) at2 

Here 'U(tl' t2) is a time-evolution operator in the 
interaction picture. We can rewrite the differential 
equations for 'U(tl' 12) in the integral form 

'U(tl' t2) = 1 - i rtldt'[Hint(t')lr'U(t', t2)' (3.8) 
Jt2 

By iterating this equation, we can get, when II > t2 , 

'U(t1' t2) = 1 - i [Hint(t')] dt' i
f 1 

f2 

+ (- i)3 (tldt']t'dt" t"dt"'[H int(t')Hint(t")Hint(t"')] 
Jt2 f2 Jt2 

+ ... , (3.9) 

which by the usual arguments can be written in the 
time-ordered form 7 

( fill + ~ dt' dt" dt"'T{H. (t')H. (t")H. (t"')} 
3 ' mt mt mt 

• f2 

= T{exp [-iLlHint(t')dt']}' (3. lOa) 

". Since to is a time before which the interparticle interactions 
vamsh, the states I i, to> are eigenstates of the noninteracting system. 

On the other hand, when t2 is greater than t1 , by 
similar arguments we get 

'U(tI' t2) = Tt!exp [ -i!:lHintCt ') dt']}' (3.10b) 

where Tt is the anti-time-ordering operator which 
orders operators in the inverse order from T. But we 
note the operation of path ordering (P) is just time 
ordering (T) when the times are on the forward leg of 
the path and anti-time ordering (Tt) when on the 
return leg. Thus it is clear that, since 12 is further along 
the path than II in the expression (3.4), we can write 
this 

(j, tol P ({ exp [ - i LOHint(S') dS']} 

p x lPr(1)lPi(2) Ii, to)ltlon(+) (3 11) 
t20n(-) , . 

in which the notation s:~ ds indicates an integration 
along the path from (to) to (ta) and back to (to). The 
other possible orderings of operators in G(l, 2) give 
similar results so that we are able to write 

iG(I,2) 

= (p{[ exp (-ii~OdS Hint(S») ] lPr(1)lPi(2)})0 , 
p 

(3.12a) 
where 

( .. ')0 = L Pij(j, tol" 'Ii, to)· (3.12b) 
i,j 

The perturbation expansion for G(l, 2) can now be 
developed in the usual way; the algebra is identical 
with that of the zero-temperature perturbation 
theory, only the time-integration path differing. We 
thus shall not dwell on the details of this development, 
as all the usual combinatorial arguments apply. The 
decomposition of time-ordered products equivalent to 
Wick's theorem follows by the same arguments as 
applied to the finite-temperature equilibrium theory,12 
so that an expansion of G(1 , 2) in powers of the inter­
particle potential is, except for the unusual temporal 
treatment, formally identical with the more familiar 
cases.13 In the usual way, diagrams with disconnected 
parts contribute a multiplicative factor ('U(lii, (0»0 to 
those diagrams without disconnected parts. In the 
physical limit that temporal development is identical 

12 For a justification of the separation of the noninteracting, 
many·particle Green's function into single-particle Green's functions 
by a method applicable here, see V. Ambegaokar, "Astrophysics 
and the Many Body Problem," in 1962 Brandeis Lectures, Volume 2, 
K. W. Ford, Ed. (W. A. Benjamin, Inc., New York, 1963). 

13 A. A. Abrikosov, L. P. Gorkov, 1. E. Dzyaloshinski, Methods 
of Quantum Field Theory ill Statistical Physics, translated by Richard 
A. Silverman (Prentice· Hall, Inc., Englewood Cliffs, N. J., 1963), 
pp.68-73. 
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in the forward and reverse directions, this factor is 
('U(tt, (0»0 = 1. It should be observed that the 
Go(1, 2), the Green's functions in the absence of the 
interparticle interaction 

iGo(1, 2) = (Plf(1)v/(2»0 

= I Pi; (j, tol Plf(l)lf \2) I i, to) (3.13) 
i,; 

contain initial-particle correlations through Pi; . 
Fujita's difficulty of correction terms to the equations 
of Kadanoff and Baym is replaced, in this case, by 
the fact that we cannot write down exact expressions 
for Go(l, 2). This is only an apparent difficulty 
however, as we never ask for an analytic form of 
Go(1,2). 

We have, therefore, the following rules for construct­
ing an nth order contribution: 

(a) Form all connected, topologically distinct 
diagrams with 2n vertices and two external points 
(1) and (2) in which two solid directed lines (one 
leaving and one entering) and one dotted line meet at 
each vertex. 

(b) With each solid line between points (I') and 
(2') associate a factor Go(l', 2') where (2') is the initial 
point and (1') the final point of the line. 

(c) With each dotted line between the points 
(l') and (2') associate a factor 

- iV(r1'2,)b(sl' - S2')' 

(d) Integrate over all free variables, 

J>s; Id3xi • 

p 

(e) For fermions only, introduce an over-all 
factor (_1)1, where I is the number of closed loops 
in the diagram. 

(f) Whenever Go(r,s;r',s) appears, it is to be 
interpreted as Go(r, s; r', s+). 

We now look at the structure of the diagrams 
contributing to G(I, 2). Since every term in the 
expansion, with the exceptio\). of the term involving no 
particle interactions, begins and ends with a bare 
particle line, it follows that we can write 

G(l, 2) = Go(1, 2) 

+ I d3 d4 Go(1, 3)~R(3, 4)Go(4, 2). (3.14) 

Here ~R(3, 4), which plays the role of a reducible 
self-energy, is the collection of diagrams contributing 
to G(l, 2) as determined by the above rules but with 
Go(l, 3) and Go( 4,2) deleted. Individual diagrams 

contributing to ~R(3, 4) may be classified either as 
reducible or irreducible. A reducible self-energy 
diagram is one which, when a single-particle line is 
removed, reduces to another self-energy diagram. In 
the standard way,14 observation of the structure of 
these diagrams leads to writing Eq. (3.14) in terms of 
the irreducible self-energy ~(3, 4), getting 

G(l, 2) = Go(l, 2) 

+ I d3 d4 Go(1, 3)~(3, 4)G(3,2). (3.15) 

In Eq. (3.15), ~(3, 4) is the sum of all diagrams which 
cannot be reduced to two simpler self-energy diagrams 
by removing one particle line. The particle lines in 
~(I, 2) are exact propagators G(l, 2) so that (3.15) is a 
self-consistent integral equation; as discussed in 
connection with Eq. (3.13), initial-particle correlations 
are contained in Eq. (3.15) via the dependence on 
Go(1,2). 

The rules for writing down a contribution to ~(l, 2) 
are similar to those for iG(I, 2). All irreducible dia­
grams with free vertices at (1) and (2) are drawn; 
except for an over-all factor of (i) in the case of 
~(I, 2) and associating with each solid line a real 
propagator iG(I, 2), contributions from such a 
diagram are determined in the same way as for 
iG(I, 2). 

At this point we note that it is possible to character­
ize the position on the path by two parameters, the 
time variable and the direction in which time is evolv­
ing. We write If(t1) for t1 increasing as 11'+«(1) and for t1 
decreasing as If-(t1) with an identical notation for 
other functions of the path variable. The path-ordered 
function can therefore be written in the matrix form 

(3.16) 

where now the path-ordering operator orders all 
operators with a (+) matrix index to the right of all 
those with a (-) matrix index. Among the (+) 
operators, operators with earliest time coordinates 
are ordered to the right (time-ordered); among the ( - ) 
operators, those with the earliest time coordinates are 
ordered to the left (anti-time ordered). An over-all 
minus sign is introduced for each permutation of 
fermion operators necessary to achieve the proper 
ordering. 

Equation (3.15) may be written in the form 

I d2G-1(1, 2)G(2, 3) = b(r1 - r3)b(sl - S3), (3.17) 

14 Reference 13, pp. 85-87. It is to be emphasized that, although 
the discussions of Ref. 13 are for the special case of a system at zero 
temperature, the arguments are topological in nature and are equally 
applicable here. 
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where 
G-l(l, 2) = Gil\l, 2) - ~(1, 2) (3.18) 

in which Gill(I, 2) is the operational inverse of Go (1 , 2). 
When we use the matrix designations of path position, 
(3.17) becomes 

f darz{i>tzG-
1
(1, 2)1+G(2, 3)+3 

+ i:Odt2G-1(1, 2)1_G(2, 3)_3} = b(r1 - r3)b(Sl - S3)· 

(3.19) 

In view of the fact that the transcription of the path­
coordinate delta function to the matrix description is 
given by 

(3.20) 

which may be verified by considering the integral 
Ip ds1b(Sl - S2) = 1, Eq. (3.19) becomes 

I d3r 2 i>t2[G-1(1, 2}r3G(2, 3)J13 

= c5(t1 - t3)c5(r1 - raHa. (3.21) 

Here 7"3 is the Pauli-spin matrix (~ _ n. 
If now we define the quantity 

(3.22a) 

and its inverse 

(;-1(1,2)12 = 2 G-1(1, 2)147"~2' (3.22b) 
4 

then (3.21) becomes 

f d3r2 1:0: dt2[(;-1(1, 2)G(2, 3)J13 

= c5(r1 - r3)b(t1 - t3)b13 . (3.23) 

It would appear at this point that all traces of initial­
particle correlations have been eliminated. This is, 
in fact, not true. The solution to the self-consistent 
equation (3.15) contains initial-particle correlations 
through Go(l, 2). When Eq. (3.15) is transformed into 
a differential equation (3.23) through the application 
of Gill (1 , 2), then the initial-particle correlations are 
contained in the boundary conditions. Equation (3.23) 
is, therefore, a real-time Dyson equation, which 
contains implicitly through the boundary conditions 
all the initial-particle correlations. 

We now observe that, in the physical limit that 
temporal development on the ( + ) and ( - ) paths is the 
same, the matrix G(l, 2) can be written 

G(l,2) = (g(l, 2) -g«1,2»), 
g>(l, 2) -g(l,2) 

(3.24) 

where g(l, 2) is the anti-time-ordered Green's function. 
Therefore, the equation of motion for G(1, 2), Eq. 
(3.23), contains all the information on the equations 
of motion of g(I, 2) and g(l, 2) [in addition to redund­
ant information on g>(I, 2) and g< (1,2)]. If now we 
identify ~>(1, 2) and ~<(1, 2) (this may be regarded 
as a definition of these quantities) via the equations 

i:(l, 2) = ~(1, 2)7"a 

= ((~>(1, 2)(1(t12) + ~«l, 2)0(/21)J - ~«l, 2») 
~>(1, 2) - [~<(1, 2)0(t12) + ~>(l, 2)(1(/21)] , 

where OCt) is the unit step function 

OCt) = {I t > 0, 
o t < 0, 

(3.25) 

then the equations of motion (3.23) are identical 
with those of Kadanoff and Baym for g>(l, 2) and 
g<(1, 2) in terms of ~>(1, 2) and ~«l, 2). 

We have, therefore, justification of the separation 
of the interaction terms in the equation of motion for 
the single-particle Green's function into self-energy 
and single-particle Green's function terms. In addition, 
we have a method for determining these self-energy 

functions directly through i:(1, 2). To do so, we 
simply transcribe the rules for the path-ordered self­
energy ~(1, 2) to the matrix description. The rules for 

calculating the contribution to i:(1, 2)ii are: 

(a) Construct all connected, irreducible, primitive 
diagrams with 2n vertices and directed solid lines 
connecting all vertices except (1, i) for which there is 
no line leaving, and (2,j) for which there is no line 
entering. Each vertex is characterized by a space­
time coordinate and a matrix variable. 

(b) For each solid line from (3, k) to (4, /) a 
factor 

iG(3,4)kl. 

(c) For each dashed interaction, a factor 

- iU(ra4)b(ta - t4)7"~4· 

(d) Sum over all free matrix variables, integrate 
over alI free space-time coordinates. 

(e) Wherever the quantity G(r3 , t 3; r 4 , t 3) appears, 
interpret it as G(ra, ta; r4 , tt). 

(f) Introduce an over-all factor i( -I)l (i for 
bosons) where (I) is the number of closed loops in the 
diagram. 

Some justification of these rules is in order. Consider 
a vertex with the coordinates along the path (r3' S3). 
If we integrate over these coordinates, there is a 



                                                                                                                                    

PERTURBATION EXPANSION FOR REAL-TIME GREEN'S FUNCTIONS 611 

factor (+ 1)f~oodt3 when the time is evolving in the 
forward direction and a factor (-1)f~oodt3 when time 
evolves in the backward direction. We can remove 
these factors by appending a 7 3 to the outgoing line 
at this vertex, thereby turning G(3, 4);j into G(3, 4);j. 
If we replace all G(3, 4);j by G(3,4);j however, one 
vertex over which no path integration is performed 
gets a factor of 7 3• But this is precisely the fac~or in the 

precise location needed to turn ~(1, 2);; into ~(1, 2);;. 

Hence our rules indeed give us i:(1, 2);j' 

4. DISCUSSION 

In the preceding we have shown that, by retaining 
redundant information on g>(l, 2) and g<(l, 2), the 
equations of motion for these quantities can be written 
in a form in which the integrals run over all space and 
time. Using this approach, and by retaining initial­
particle correlations in the unperturbed Green's 
functions, we have shown that the separation of the 
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interaction terms into self-energy and single-particle 
Green's function terms is justified without the need 
for the correction terms of Fujita. In addition, we have 
devised a perturbation expansion to determine the 
self-energy functions ~ > (1, 2) and ~ < (l, 2) appearing 
in the theory of Kadanoff and Baym. Since both space 
and time integrations run over all values, the explicit 
functional dependence of the self-energy functions 
upon the single-particle Green's function g> (1' , 2') 
and g<(1', 2') may be determined directly via the 

dependence of i:ij(l, 2) on G(I', 2')i'1" 
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An extension theorem prescribing a method for constructing the (n + I)-dimensional Lorentz group 
O(n, I) from the n-dimensional inhomogeneous rotation group, proved earlier, has been recapitulated 
and some comments on the theorem are made. The prescription is used to construct the unitary irreducible 
representations of the Lorentz groups 0(2, I), 0(3, 1), and 0(4, 1), and it is found that only a limited 
number of representations are allowed. 

I. INTRODUCTION 

It has been realized in recent years that group 
theory could profitably be employed in the study of 
hadrons. This is due to the symmetries possessed by 
the systems which in turn permit one to classify their 
spectra and to calculate some experimental numbers. 
Inquiries along this line have invariably led to non­
compact groups as evidenced both in exactly solvable 
nonrelativistic quantum-mechanical systems and 
strong-coupling theories. This introduction of non­
compact groups has, of course, been necessitated 
because of the existence of bandlike structures in the 
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spectrum. Meanwhile, it is also noted that such 
symmetries have a dynamical origin which may throw 
some light on the role and relevance of noncompact 
groups and other allied problems. Thus, it is apparent 
that noncompact groups become a powerful apparatus 
for exploring symmetries and dynamics of physical 
systems. 

In this paper, an extension theorem pertaining to 
noncompact groups has been stated and proved. As 
an application, the theorem is then used to find out 
the unitary irreducible representations of the non­
compact groups 0(2, I), 0(3, I), and 0(4, I). It is 
shown that, by using the extension procedure only, a 
class of unitary irreducible representations can be 
obtained from the infinitely many otherwise possible 
for the groups under consideration. Nevertheless, the 
representations obtained by extension technique are 



                                                                                                                                    

PERTURBATION EXPANSION FOR REAL-TIME GREEN'S FUNCTIONS 611 

factor (+ 1)f~oodt3 when the time is evolving in the 
forward direction and a factor (-1)f~oodt3 when time 
evolves in the backward direction. We can remove 
these factors by appending a 7 3 to the outgoing line 
at this vertex, thereby turning G(3, 4);j into G(3, 4);j. 
If we replace all G(3, 4);j by G(3,4);j however, one 
vertex over which no path integration is performed 
gets a factor of 7 3• But this is precisely the fac~or in the 

precise location needed to turn ~(1, 2);; into ~(1, 2);;. 

Hence our rules indeed give us i:(1, 2);j' 

4. DISCUSSION 

In the preceding we have shown that, by retaining 
redundant information on g>(l, 2) and g<(l, 2), the 
equations of motion for these quantities can be written 
in a form in which the integrals run over all space and 
time. Using this approach, and by retaining initial­
particle correlations in the unperturbed Green's 
functions, we have shown that the separation of the 
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interaction terms into self-energy and single-particle 
Green's function terms is justified without the need 
for the correction terms of Fujita. In addition, we have 
devised a perturbation expansion to determine the 
self-energy functions ~ > (1, 2) and ~ < (l, 2) appearing 
in the theory of Kadanoff and Baym. Since both space 
and time integrations run over all values, the explicit 
functional dependence of the self-energy functions 
upon the single-particle Green's function g> (1' , 2') 
and g<(1', 2') may be determined directly via the 

dependence of i:ij(l, 2) on G(I', 2')i'1" 
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that noncompact groups become a powerful apparatus 
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class of unitary irreducible representations can be 
obtained from the infinitely many otherwise possible 
for the groups under consideration. Nevertheless, the 
representations obtained by extension technique are 



                                                                                                                                    

612 A. SANKARANARAYANAN 

physically interesting and relevant to noninvariance 
groups. 

II. EXTENSION THEOREM 

This theorem gives a prescription for constructing 
the (n + I)-dimensional Lorentz group O(n, 1) from 
the n-dimensional inhomogeneous rotation group. 
This has been achieved by taking certain elements of 
the universal enveloping algebra of the inhomoge­
neous rotation group. The universal enveloping 
algebra is the set of polynomials formed from the 
generators of the Lie algebra of a Lie group by taking 
into account the commutation relations of the Lie 
algebra. It may also be noted that the center of the 
universal enveloping algebra is generated by the 
so-called Casimir operators, the values of which 
essentially characterize the irreducible representation 
of the group. 

Theorem1 : If the rotation and translation generators 
Mab and PC' respectively, of the n-dimensional in­
homogeneous rotation group [JO(n)] are given, then 
one can construct the homogeneous Lorentz group 
of the (n + I)-dimensional space; the generators of the 
latter are given by 

Mab and Xc = 1/2(PaPa)![Mcb , Pb]+' 

Proof" The inhomogeneous rotation group in n 
dimensions is the group of all real linear transforma­
tions with determinant + 1 that leave invariant the 
quadratic form 

(1) 

where (~xa) denotes the displacement between two 
points in this n-dimensional space and the Euclidean 
metric bab is the Kronecker delta. The transformation 
is generally written as 

n 

x; = zai;x; + bi' 
;=1 

(2) 

where the coefficients aij and bi are real and are 
characteristic of rotations and translations, respec­
tively. The aij constitute an orthogonal matrix. Thus 
the group IO(n) is generated by the. n(n - 1)/2 
infinitesimal rotation operators and n infinitesimal 
translation operators. The number of real parameters 
of JO(n) is n(n + 1)/2. As is well known, the infini­
tesimal operators can be obtained from the Taylor­
series expansion of functions in the n-dimensional 
space. The infinitesimal rotation operators Mab are 
chosen to be Hermitian and are antisymmetric: 

(3) 

1 A. Sankaranarayanan, Nuovo Cimento 38, 1441 (1965). 

They obey the commutation relations 

[Mab , M cd] 

= i(bacMbd + badMcb - (jcbMad - bbdMca). (4) 

These commutation relations may easily be obtained 
from the root diagram of the Lie ring. The infinitesimal 
translation operators Pa are also chosen to be Her­
mitian and obey the following commutation relations: 

[Pa' Pb] = 0, (5) 

[Mab,pc] = i(bacPb - (jbcPa)' (6) 

It is also to be noted that p~ is a Casimir operator of 
the group as it commutes with the generators Mab 
and Pc' This operator p~ must have constant value for 
an irreducible representation of the group JO(n) 
which is partially characterized by this value. It is 
always assumed that p~ is greater than zero unless 
otherwise mentioned. 

Now to prove the theorem, one has to show that 
Mab and Xc = I/2(PaPa)![Mcb , Pb]+ give the Lie algebra 
of the (n + I)-dimensional Lorentz group O(n, 1). 
First of all, the number of parameters for O(n, 1) is 
n(n + 1)/2, which is the same as the number of 
parameters given by Mab [n(n - 1)/2 parameters] and 
Xc (n parameters). The Lie algebra of Mab and Xc can 
be easily calculated by making use of Eqs. (4) to (6) 
and is given by 

[Mab' Xc] = i«(jacXb - (jbcXa) (7) 

and 

(8) 

Now Eqs. (4), (7), and (8) can be jointly written as 

[Ma'b" MC'd'] = i(ga'c,Mb'd' + ga'd,Mc'b' 

- gb'c,Ma'd' - gb'd,Mc'a')' (9) 

where a', b', c', and d' run from I to (n + 1); gab = (jab 
and gn+1,n+1 = -1, and M n+1,a = Xa = -Ma,n+1; 

M n+1,n+1 = O. It is also obvious that 

Ma'b' = -Mb'a" 

Equation (9) gives the Lie algebra of O(n, 1) and the 
generators are Ma'b" Hence the theorem is proved. 
We now make the following comments. 

(I) Although the above "extension" theorem is 
proved for the inhomogeneous rotation group, the 
theorem is true, in general, for a proper rotation group 
in n dimensions denoted by the generators Mab and a 
set of quantities, say qc' instead of the translation 
generators, if qc transforms like an n-dimensional vector 
under rotations Mab and forms an Abelian algebra like 
the translation generators. This idea has been exploited 
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by the author2 in constructing the generators of the 
noninvariance group for the hydrogen atom. 

(2) The theorem is true also for pseudo-Euclidean 
rotations and all one has to do is to use the appro­
priate reality conditions in accordance with the type 
of space one is dealing with. That is to say, given the 
group JO(m, n), one can construct the Lie algebra of 
the group Oem + 1, n) or Oem, n + 1), depending on 
the metric element. In particular it is shown elsewhere3 

that one can construct the de Sitter group from the 
Poincare group by using the above theorem. It is 
rather remarkable that by starting with flat space one 
can go to a space with constant curvature by making 
use of the theorem. Of course, it is to be noted that the 
groups obtained for a space of constant curvature 
and for a flat space have the same number of param­
eters even though the groups themselves are different 
both algebraically and topologically. This connection 
between the Poincare group and the de Sitter groups 
[both 0(3,2) and 0(4, 1)] is perhaps to be traced to 
the fact that the de Sitter groups have the property 
of being in variance groups of spaces which are locally 
isomorphic metrically to Minkowski space-time. It is 
also suspected that this observation may be true in 
general. 

(3) It has been shown4 that the subgroups JO(n, m), 
O(n + 1, m), and O(n, m + 1) of O(n + 1, m + 1) 
leave invariant a given vector v in the corresponding 
space if it is lightlike, timelike, or spacelike, respec­
tively. But it is observed earlier that by using the 
extension theorem one can construct O(n + 1, m) and 
O(n, m + 1) from Wen, m). Thus the theorem could 
be used to find out the little groups. Then these ideas 
could be exploited in constructing the representations 
of the various groups as they all have the same complex 
Lie algebras. 

(4) One would have obtained the Lie algebra given 
by Eq. (9) just by defining X; = (PaPa)-!McbPb' But 
this choice is not desirable as it is neither Hermitian 
nor anti-Hermitian and consequently it will lead to 
difficulties in interpretation and in defining the Hilbert 
space and scalar product. 

(5) The prescription given by the theorem enables 
one to construct a basis of the Lie algebra for the 
Lorentz group Oem, n + 1) or Oem + 1, n) from 
JO(m, n).3 Then this could be exploited in studying 
irreducible representations of the constructed group. 
We will discuss this elaborately in the section on the 
representations. But we only mention here that this 

• A. Sankaranarayanan, Nuovo Cimento 44, 193 (1966). 
3 A. Sankaranarayanan and R. H. Good, Jr., Phys. Rev. 140, 

B509 (1965); J. Rosen and P. Roman, J. Math. Phys. 7,2072 (1966). 
• H. Bacry, Ann. Henri Poincare 11, 327 (1965); P. M. Mathews, 

Nuovo Cimento 45A, 527 (1966). 

procedure gives only a limited number of unitary 
irreducible representations which nevertheless turn 
out to be physically significant, as we will see later. 

(6) It has also been noted3,5,6 that adding a term 
Pa to Xa still preserves the commutations and thus the 
Lie algebra and hence the theorem is still true. In fact 
this has already been exploited by Bohm5 to a great 
extent in defining "dynamical" groups and in deriving 
mass spectrum. Even though it works well within the 
framework of Lie-algebra relations, such an additional 
term (that is, addingpa to Xa) would give undesirable 
Hermitian or time-reversal properties. To see this 
clearly, let us take the example 10(3). The generators 
are chosen to be Hermitian and are given by J and p, 
respectively, for the rotations and the translations 
with the commutation rules 

[Ji , J j ] = i€iikJk' 

[Ji , Pi] = i€iikPk' 

[Pi,Pi] = o. 
Under the time-reversal operation T, 

p-+ -p, 

J -+ -J. 

(10) 

(11) 

Now one defines the generalized momenta following 
Bohm and Rosen, 

A 
X = P + --! (p x J - J x p), (12) 

2(PiPi) 

where (PiPi) is assumed to be greater than zero. If A is 
real, then X is a well-defined Hermitian operator by 
Garding's construction. 7 But under time reversal T, 

X -+ -p + [A/2(PiPi)!](P x J - J x p). (13) 

Thus it does not transform like a momentum vector 
under time reversal in the original space. But one shall 
make this behave like a momentum vector by making 
A to be pure imaginary by taking into account the 
antiunitary nature of time reversal.8,9 But then the 
Hermitian character of X is lost. Thus it leads to 
the question of whether one can define a Hermitian 
"generalized momentum" in a consistent way without 
violation of the invariance under discrete transforma­
tions. It is to be remarked that in the above criticism 
it is tacitly assumed that the physical space and the 
group space are the same. If this is not so, then the 
situation is not clear. Anyway, in these days of break­
downs of discrete symmetries, perhaps one does not 

5 A. B6hm, Phys. Rev. 145, 1212 (\966). 
6 J. Rosen, Boston University (report of work prior to publication). 
7 L. Garding, Proc. Natl. Acad. Sci. U.S. 33,331 (1947). 
8 E. P. Wigner, G6ttingen Nachr. 546 (1932). 
• L. L. Foldy, Phys. Rev. 102, 568, (1956). 
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have to worry about this. Again, if these dynamical 
groups signify real physics, it is perhaps an indication 
of the violation of time-reversal invariance in nature! 

III. EXTENSION THEOREM AND THE 
REPRESENTATIONS OF 0(2,1) FROM 10(2) 

The group JO(2) may be considered as the group of 
rigid motions of a plane which is the semidirect 
product of the one-parameter rotation group and 
two-parameter translation group. The generators for 
the rotation and the translation are denoted by J 3 , 

PI' and Pz , respectively, and their Lie algebra is 

[13' P ±] = ±P ±' 

[P+, P_] = 0, 
(14) 

where P± = PI ± iPz• As is obvious, the generators 
PI and P z form an Abelian invariant subgroup. One 
can proceed to find the unitary irreducible representa­
tion of this group either by making the translation 
subgroup or by making the rotation subgroup diago­
nal. Anyway, for our purpose, we will use the latter 
method. 

We will use the Lie algebra given by Eq. (14) to find 
the unitary irreducible representation of the group 
JO(2) which is noncompact; then the unitary irreduc­
ible representations are infinite dimensional. 

One can use the irreducible representations of a 
Lie algebra if the generators are defined on a dense 
set of Hilbert space, since a valid connection between 
the invariant subspaces of the representations of the 
algebra and the representations of the group exists. 
This is, of course, the consequence of the fact that 
there exists a dense set of analytic vectors for every 
unitary representation.10 

We will work out the unitary irreducible representa­
tions of this group on discrete Hilbert space which is 
defined as the linear vector space over the ortho­
normal basis 1m) where m is countable and discrete 
and a vector <P = Lm <Pm 1m) belongs to this discrete 
Hilbert space if and only if the norm II <P II is finite. 

The operator J3 generates space rotation on the 
plane and thus the subgroup generated by J3 is 
Abelian and compact. Supposing that a unitary 
irreducible representation is given, the eigenvalues of 
the generators are real. The spectrum of J3 is discrete 
as it is compact and one can diagonalize J3 • Then, by 
virtue of Eq. (14) it is seen that the real eigenvalues of 
J3 differ by unity and P + and P _ raises or lowers, 
respectively, the eigenvalue of 13 by one unit. These 
representations are in general multivalued. The 
space corresponding to each eigenvalue of J3 is one-

10 E. Nelson, Ann. Math. 70, 572 (1959). 

dimensional and the Hilbert space H on which the 
unitary irreducible representations of JO(2) are defined 
is the direct sum of these one-dimensional spaces. 
Thus the eigenvectors of J3 form a basis for H. Then 

131m) = m 1m). (15) 

By operating the commutator [J3 , P +] = P + on the 
vector 1m) we get 

(16) 

where C;"+I may be a complex number. We exclude 
the possibility of this being zero. Again from the 
commutator [J3 , P _] = - P _ we obtain 

P _ 1m) = C;;' 1m - 1), (17) 

where again we assume C: to be a nonzero complex 
number. By properly normalizing the vectors it can be 
shown that 

C;"= -C;;', (18) 

for every m. This phase convention is chosen for 
future convenience. From the commutator [P +, P _] = 
o we get 

(19) 

This reflects the fact that the constant does not depend 
on m. Now the Casimir operator of the group is given 
by P+P_ which acts on 1m) to give 

P+P_lm) = -C;;lm) = ft 2 Im). (20) 

Thus the meaning of the constant C becomes clear. 
So, for the complete classification of JO(2) one has 
only to determine the form of the eigenspectrum of 
J3 and its relation with the Casimir operator of the 
group. 

Generally, the eigenvectors can be represented by 
1ft, m) and then we get 

131ft, m) = m 1ft, m), 

P ± 1ft, m) = ±ift l,u, m ± I), 
(21) 

where,u is always assumed to be positive. The explicit 
matrix elements for the generators 13 , PI' and P z are 
given by 

(,u, m'l 13 1,u, m) = mbm'm, 

(,u, m'l P1 1,u, m) = Ci,u/2)[bm',m+1 - bm"m-d, (22) 

(,u, m'l Pzl,u, m) = (,u/2)[bm',m+l + bm',m-l]' 

As is obvious from the range of m, the unitary 
irreducible representations of the group are infinite­
dimensional and each unitary irreducible representa­
tion is characterized by the Casimir invariant 
P; + Pi = ,u2 and the value of J 3 • It is also to be 
noted in Eq. (22) that PI and P2 have nonzero matrix 
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elements only between the consecutive eigenvalues of 
Ja, and PI has all its matrix elements pure imaginary 
and P2 all real; this fact preserves the unitary nature of 
the representation. We have here avoided the repre­
sentations in which all the matrix elements of PI and 
P2 are zero, since such a case is of no interest as the 
"extension" theorem cannot be applied. 

We now turn to discuss the "extension" of 10(2) 
and define the operators 

2 2 1 
Xi = [l/2(P l + P2)~][Mij, Pj]+' (23) 

As we said earlier, (P: + PD is the Casimir operator of 
10(2) and it is assumed to be nonzero for our pur­
poses. Then we get 

Xl = (l/2,u)[JaP2 + P2Ja], 

X 2 = -(l/2,u)[JaPl + PlJa]· 
(24) 

The commutation of Xl and X2 with Ja is given by 

[Xl' X2 ] = -iJa , 

[X1,]3] = -iX2, 

[X2 ,Ja]=iXl • 

(25) 

Thus Eq. (25) generates the Lie algebra ofthe (2 + 1) 
Lorentz group 0(2, I). Now we are interested in 
finding out which unitary irreducible representations 
of 0(2, 1) are obtained from a given ,u2 unitary 
irreducible representation of 10(2). Construct 

X± = Xl ± iX2 

= =fU/2,u)[Ja, P ±]+. (26) 

By operating X ± on the eigenvectors l,u, m) we get 

X ± l,u, m) = =fU/2,u)[Ja, P ±]+ l,u, m) 

= (m ± t) l,u, m ± I). (27) 

The Casimir operator of the group 0(2, 1) is given by 

c = -t(X+X_ + X_X+) + J5. 

When C operates on the vector l,u, m) we get 

C l,u, m) = -t l,u, m). 

(28) 

(29) 

Thus, we can get 0 unitary irreducible representation of 
0(2, I) characterized by the eigenvalue (-t) of the 
Casimir operator. It belongs to the eigenvalues of Ja 
varying by steps of 1 from - 00 to + 00. 

The unitary irreducible representations of 0(2, 1) 
deduced here by using the "extension" theorem are to 
be identified with the following representations 
obtained by Bargmannll : 

(i) For m integer, one obtains the member of 

11 V. Bargmann, Ann. Math. 48, 568 (1947). 

Bargmann's continuous class C~ with q = t and 
m = 0, ±l,···. 

(ii) For m = t odd integer, the unitary irreducible 
representation belongs to Bargmann's discrete class 
Dt with m = t, !,"', and D"i with m = -t, 
-!, .... It is interesting to note here that the opera­
tors X ± vanish when m = =ft as is obvious from Eq. 
(27). 

(iii) For all other m's the representations of 0(2, 1) 
is neither single-valued nor double-valued and hence 
corresponds to none of Bargmann's classes as he 
considers only the single- and double-valued ones. 
Then writing 

C=-t=K(K-I), (30) 
we get 

K=t· 

Thus, the unitary irreducible representation we get 
corresponds to Dr in the notation of Bargmann.ll 

Hence, it turns out that the operators constructed 
from 10(2) by means of the "extension" theorem give 
uniquely the unitary irreducible representation Dr. 
It is well known from Bargmann's work that for a 
fixed value of K there exists an infinite set of repre­
sentations for the 0(2, 1) group and all these repre­
sentations differ from one another in an arbitrary 
number A which occurs in choosing the proper basis 
vectors of the representation. Thus we shall write 

JaIK, m) = (A + m) IK, m), 

X ± IK, m) (31) 

= [K(l - K) + (A + m)(A + m ± 1)]t IK, m ± 1). 

In our case K(K - 1) = -t. Then when C acts on 
IK, m) with the choice of eigenvalues given by Eq. 
(31) we again get 

C IK = t, m) = [J5 - t(X+X_ + X_X+)] IK = t, m) 

=-tIK=t,m). (32) 

This agrees with our original result given by Eq. (29). 
It is interesting to write down the matrix elements of 
Xl and X 2 and.to compare them with those of PI and 
P2 of 10(2). They are given by 

(K, m'l Xl IK, m) 

= Hrt + (A + m)(A + m + l)]tbm·. m+1 

+ [t + (A + m)(A + m - l)]!D m • m-l}, 
. . (33) 

(K, m'l X 2 IK, m) 

= -i/2{[t + (A + m)(A + m + l)]tDm,.m+1 

- [t + (A + m)(A + m - l)]!Dm'.m_d. 
Like the matrix elements of PI and P2 given by Eq. 
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(22), the matrix elements of Xl and X2 have non­
vanishing matrix elements only just above and just 
below the main diagonal. It is, of course, a reflection 
of the fact that both (PI' P 2) and (Xl' X 2) transform 
like vectors under the rotation la. Again, to preserve 
the unitary nature of the representations, the matrix 
elements of Xl and X 2 are real and purely imaginary, 
respectively, as in the case of Eq. (22). Both the matrix 
elements Xl and X 2 have different numbers in each 
element, whereas for PI and P2 we have the same 
number ft/2. 

The group 0(2, I) is infinitely connected as it is 
topologically homeomorphic to the direct product of 
the circle and the Euclidean plane. Then, one might 
expect to obtain both "single-valued" and "multi­
valued" irreducible representations of 0(2, 1) for 
C = -to This, of course, depends on the fact how 
one starts in Eq. (21) with "single-valued" (m = 
integer) or "multivalued" (m ~ integer) irreducible 
representation of /0(2). The generators of 0(2, 1) 
constructed by using the "extension" theorem are 
exactly what one needs for the group 0(2, I) when 
0(2, 1) is interpreted as the noninvariance group of the 
one-dimensional harmonic oscillator. Thus the gener­
ators of 0(2, 1) given by Eqs. (24) and (25) completely 
describe the behavior of a one-dimensional oscillator 
where energy is associated with the compact subgroup 
(i.e., rotation in the plane). The energy spectrum for 
the special value of the Casimir operator C = -t 
(corresponding to the unitary irreducible representa­
tion Dp is 13 = (n + D. Thus the group defined by 
Eq. (25) contains precisely the complete information 
about the one-dimensional oscillator, including energy 
levels, degeneracy, and the Hilbert space. Again this 
group 0(2, 1) is the noninvariance group of the hydro­
gen atom in unidimension whose bound-state energy 
spectrum is nondegenerate and discrete. 

IV. REPRESENTATIONS OF 0(3, 1) 
FROM JO(3) 

The group 10(3) is generated by translation gener­
ators Pi and rotation generators li and their Lie 
algebra is given by 

[li,li] = iEiiklk' 

[li , Pi] = iEijkPk' 
[Pi,Pi] = O. 

(34) 

As is obvious from the commutation relations, the Pi 
form an Abelian invariant subgroup and the li form the 
rotation subgroup. Thus 10(3) is the semidirect 
product of these two subgroups. As in the case of 
10(2), one can find the unitary irreducible representa­
tions either by making translation-generator eigen-

states or by constructing rotation-group eigenstates. 
Now all the considerations made earlier about the 
Hilbert space H are applicable here and we construct 
unitary irreducible representations of 10(3) in terms 
of Hermitian matrices on H. The Lie algebra given by 
Eq. (34) is rewritten in the following form for con­
venience in terms of 1 ±, la, P ±' and Ps: 

[la,J±] = ±1±, 
[1+,1_] = 21s, 

[la,P±] = [Pa,l±l= ±P±, 

[l+,P_l = [P+,J-l = 2Pa, 

(35) 

and the rest of the commutators are zero. The repre­
sentation space of /0(3) is denoted by H which can be 
written as a direct sum of H;, 

H =! ffi Hi' (36) 
; 

where Hi are all irreducible with respect to the rotation 
group 0(3) and each value of j occurs at most once. 
We choose the unitary irreducible representations of 
0(3) in such a way that la is diagonal and the matrix 
elements are given by 

(j, mil lali, m) = mbm'm' (37) 

where the eigenvalues m run through - j to + j and the 
Ij, m) represent the basis vectors of each subspace and 
for a fixed j they form a canonical basis for an irre­
ducible representation of 0(3). The matrix element 
(j, mill ± Ij, m) ~ 0 only for m' = m ± 1 and for all 
other "m" values this matrix element will be zero. 
This reflects that the "m" values in a given representa­
tion differ by integers. With an arbitrary choice of 
phase these matrix elements are 

(j, mil + Ij, m - I) = (j, m - 11 1_ I j, m) 

= [j(j + 1) - m(m - I)]!, (38) 

1 2 1j, m) = j(j + 1) Ij, m). (39) 

Now since P transforms as a vector under rotations, 
it follows that the reduced matrix elements (jl P 1/) = 
o unless j' =.i or.i ± 1 and the matrix elements of P 
are fixed by its vector nature. The Casimir operators 
of the group are given by 

CI=p·p, 

C2 =J·p=p·J, 

(40) 

(41 ) 

and in each irreducible representation they are given 
by a numerical constant. The unitary irreducible rep­
resentations are worked out by literally following the 
Harish-Chandra-Neumark method12 and taking into 
account the commutation relation between J and P. 

12 Harish-Chandra, Proc. Roy. Soc. (London) 189A, 372 (I947); 
M. A. Neumark, Am. Math. Soc. Trans!., Ser. 2, 6, 379 (1957). 
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The matrix elements of P are given by 

(' I mil PI' m) = /-l [(j + h + 1)(j - h + 1)(j + m + 1)(j - m + I)]! 
J , a J, 2(j + 1) (j + !)(j + t) 

m/-lh 
X 0" '+10m'm + 0" 'Om' m , " j(j + 1) '" , 

+ /-l [(j + h)(j - h)(j + m)(j - m)]!o.,. ° , 
2j (j+t)(j-t) 101-1 m,m' 

(j', mil P ± Ij, m) = jet: 1) [(j ± m + 1)(j =F m)]!01',iOm',m±1 

=F /-l [(j+h+1)(j-h+l)(j±m+l)(j±m+2)]!0 b 
2(j + 1) (j + !)(j + l) 1',1+1 m',m±l 

± /-l [(j + h)(j - h)(j =F m)(j =F m - 1)J! b.,. 0, . 
2j (j + l)(j _ t) 1,1-

1 
m ,m±l 

The Casimir operators give /0(3). The new generators are 

p. P l/-l,j, m) = /-l21/-l,j, m) (43) Ki = [1/2(P. P)!]€ijk[Jk , Pi ]+. (47) 
and 

J. P l/-l,j, m) = /-lh l/-l,j, m), (44) 
In vector notation it reads 

where /-l is always assumed to be nonzero and real 
and the minimum value of j is always equal to the 
value of h. Thus, 

K = (1/2/-l)[P x J - J x Pl. (48) 

jmin = h. (45) 

Then the whole Hilbert space, in which the unitary 
irreducible representations are defined, is given by 

00 

H = ! EEl Hi' (46) 
i=imin=h 

and it is obvious that the unitary irreducible repre­
sentations are infinite-dimensional as there is no upper 
limit on the value of j. Here again, we do not consider 
the case where P • P takes the eigenvalue zero since 
such a situation is not pertinent for using the "exten­
sion" theorem in the construction of the Lie algebra 
of 0(3, 1). 

A Lie algebra isomorphic to that of 0(3, 1) is 
obtained by applying the "extension" theorem on 

The commutation relations between J and K are given 
by 

J x J = iJ, 

K x K = -iJ, 

JxK+KxJ=2iK. 

(49) 

Thus J and K generate an algebra isomorphic to the 
Lie algebra of 0(3, 1). It now remains to be seen what 
unitary irreducible representations are obtained from 
the (/-l, m) unitary irreducible representation of /0(3) 
by the "extension" procedure. To achieve this end, let 
us construct K± and Ka, and they are given by 

K± = ± (i/2/-l){[J ± ' Pa]+ - [Ja, P ±]+}, 

K3 = (1/2/-l)[(J2P1 + P1J2) - (J1P2 + P2J1)]. (50) 

By operating K± and Ka on the canonical basis vectors 
Ij, m) we obtain 

K I', m) = ±..!. [(j + h + 1)(j - h + 1)(j ± m + 1)(j ± m + 2)J!1 . + 1 m ± 1) 
± J 2 (j + !)(j + t) J , 

± ..!. [(j + h)(j - h)(j =F m)(j =F m - 1)]!1 . _ 1 m ± 1) 
2 (j + l)(j - l) J" 

K I " m) = _ ..!. [(j + h + 1)(j - h + 1)(j + m + 1)(j - m + 1)J!1 . + 1 m) 
a J 2 (j + !)(j + t) J , 

(51) 

+ ..!. [(j + h)(j - h)(j - m)(j + m )] I . _ 1 m). 
2 (j + t)U - t) J, 
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Here, since K transforms as a vector under rotation, 
one would expect that (jl KIF) ¥= 0 for j' = j or 
j ± 1. But from Eq. (51) it is apparent that we do not 
have nonzero matrix elements for F = j. It will 
become obvious sooner that this is the reason that 
one could not obtain all the unitary irreducible 

J3 \j, m) = m Ii, m), 

J± Ii, m) = [j(j + 1) - m(m ± l)]! Ii, m ± 1), 

F \.) imhc \. ) 
3 J, m = - j(j + 1) J, m 

representations of 0(3, 1) by using the "exten­
sion" process. Now to obtain the unitary irreducible 
representations of the algebra (49), we will ex­
plicitly write down the irreducible representation 
of the Lorentz group12 in Hilbert space. They are 
given by 

_ i [(j + h + 1)(j - h + 1)(j + m + 1)(j - m + 1)(j + c + 1)(j - c + I)]! 
2(j + 1) (j + })(j + t) 

x \ . + 1 m) + ~ [(j + h)(j - h)(j - m)(j + m)(j + c)(j - C)]!\ . _ 1 m) (52) 
J '2j (j + t)(j - t) J , , 

F \. m) = i [(j + h + 1)(j - h + 1)(j ± m + 1)(j ± m + 2)(j + c + 1)(j - c + I)Jl 
± J, ± 2(j + 1) (j + })(j + t) 

x Ii + 1, m ± 1) - ihc [(j T m)(j ± m + 1)]1 Ii, m ± 1) 
j(j + 1) 

~ [(j + h)(j - h)(j T m)(j T m - 1)(j + c)(j - C)]I\ . _ 1 m 1) 
± 2· ( . + 1)( . 1) J , ± , J J 2 J-"2 

where the generators of the Lorentz group are given 
by J and F and j, h, and m have the same meaning as 
in Eq. (42). These irreducible representations of the 
Lorentz group become unitary: 

(i) if c is purely imaginary and h is an arbitrary 
nonnegative integral or half-integral number, 

(ii) if c is a real number in the interval 0 ~ c ~ 1 
and h = O. 

The unitary irreducible (epresentations belonging to 
(i) are known as the principal series of representations 
and those belonging to (ii) are known as the supple­
mentary series of representations. When we let c = 0 
in Eq. (52) we get precisely Eq. (51) giving the matrix 
elements of K± and K3 and the matrix elements of J ± 

and J3 are the same in both the cases. Thus, the 
Lorentz group 0(3, 1) obtained by the "extension" 
gives only those unitary irreducible representations for 
which c is zero. This result could also be easily obtained 
just by operating the Casimir operators of 0(3, 1) on 
the basis vectors Ij, m). The Casimir operators for 
this group are 

(53) 
and 

(54) 

From the definition of K it is easily seen that 

C2 = (l/2,u)[J. (P x J) - J. (J x P)] = 0 (55) 

and 
C1 = J2 - {J2(P2/,u2) + (P2f,u2) - [(J • P)2f,u2]}. 

(56) 

Now by making use of Eqs. (39), (43), and (49) one 
gets 

(j, ml C1 Ij, m) = h2 
- 1. (57) 

The structure of the generators defining the Lie 
algebra of 0(3, 1) is such that C2 becomes identically 
zero and C1 takes the value (h2 - 1). To understand 
what unitary irreducible representations are obtained 
by "extension," we should compare the values of C1 
and C2 with that of Neumark. Then we get 

C1 = h2 
- 1 = h2 + c2 

- 1, 

C2 = 0 = ihc. 
(58) 

Thus, it is seen once again that the unitary irreducible 
representations obtained here are those for which 
c = o. 

v. REPRESENTATIONS OF 0(4, 1) FROM 
THE POINCARE GROUP 10(3, 1) 

In this section we shall construct a Lie algebra 
basis for the de Sitter group 0(4, 1) from the Poincare 
group3 and then work out what unitary irreducible 
representations are obtainable for the de Sitter group 
from the Poincare group by the "extension" procedure. 
The Poincare group is generated by the rotation and 
translation generators M/l' and P/l' respectively, and 
they obey the Lie algebra 

[M/l' , Mpu] 

= i(O/lpM,u + O/l~Mp. - Op.M/lu - o.uMP/l) (59) 
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and 
[Mllv' pp] = i(OIlPPv - 0VPPIl ), (60) 

[PIl , PV] = 0, 

where ft, v, p, and (J' run from 1 to 4 and we use the 
Euclidean metric and thus the time components are 
purely imaginary. As is well known from the works of 
Wigner13 and Bargmann,14 the unitary irreducible 
representations of this group are characterized by the 
two Casimir operators 

C1 = PIlPIl ; C1 Im,j) = -m2Im,j) (61) 
and 

C2 = WIlW Il ; C2 Im,j) = j(j + 1) Im,j), (62) 

where wll is the Pauli-Lubanski operator given by 

wll = -(ij2m)€llvpcrMvpPcr' (63) 

As had already been noted in Ref. 3, the basis for 
de Sitter algebra is given by M llv and 

X Il = (lj2m)[Mllv, P.]+. (64) 

It is easily seen from Eqs. (59) and (60) that 

[XIl , Xv] = -iMllv (65) 
and 

[Mllv , Xp] = i(OllpXv - OVpXIl ). (66) 

Thus, Eqs. (59), (65), and (66) constitute a basis for 
the de Sitter algebra 0(4, 1). 

To find out what unitary irreducible representations 
of 0(4, 1) are produced from the Poincare group by 
using this particular basis M llv and X Il , we can start, 
as we did earlier in the case of 0(3, 1), either by 
explicitly writing down the matrix element of each 
generator or by directly looking at the structure of the 
Casimir operators and operating them on the basis 
vectors of the original group. In this case we shall 
adopt the second method for simplicity. There are 
two Casimir operators for this group and are given 
bylS.16 

and 
C2 = Wa,Wa" 

where a' and b' run from 1 to 5; 

M a'b' = M IlV where a and b run from 1 to 4, 

MILs = X Il = -Msll 
and 

(67) 

(68) 

(69) 

Wa, = -(ij4)€a'b'c'd'e,Mb'c,Md'e" (70) 

Equation (70) is the five-dimensional analog of the 
Pauli-Lubanski operator and €a'b'c'd'e' is the five­
dimensional completely anti symmetric tensor. To 
evaluate the Casimir operators C1 and C2 on the basis 
vectors of the Poincare group, one can take advantage 

13 E. P. Wigner, Ann. Math. 40,149 (1939). 
U V. Bargmann and E. P. Wigner, Proc. NatL Acad. Sci. USA 

34,211 (1948). 
is L. H. Thomas, Ann. Math. 42, 113 (1941). 
16 T. D. Newton, Ann. Math. 51, 730 (1950). 

of Wigner's little-group technique. From our definition 
of X Il we assumed the existence of a rest system and 
all our generators are covariantly defined. Then the 
easiest way to evaluate C1 and C2 is to compute the 
same in the rest frame by using the appropriate M llv 
and PIl . Let us denote Mllv by M~~) in the rest system 
and then write 

M (O) - J 
ii - €iik k' 

where Jk is the spin angular momentum and 

M:~) = iKi • 

Since p~O) = (0,0,0, im) and 

X(O) .= (lj2m)[' M(O) p(O)] 
J.l j.l.V' v +, 

we explicitly get 
X:O) = -Ki' 

xiO) = O. 

(71) 

(72) 

(73) 

Now writing manifestly C1 and C2 in terms of the 
rest-system quantities we get 

C
1 

= -21 M(~) M(O) + M(~) M(40) + X(O) X(O) 
11 13 h 1. 1, 1. 

= J. J - K • K + K • K = J . J (74) 
and 

C2 = (M~~)X~O) + M~~)X~O) + M~~)xlO)2 
+ (M~~)X~O) - M~)X~O)2 

+ (M~~)X~O) - M~~)xlO)2 

+ (M~~)X~O) - M~~)xiO)2 

+ (Mi~) M~~) + M~~) M~~) + M~) Mi~)2 
= (J. K)2 + J. J - (J . K)2 = J. J. (75) 

Thus, when C1 and C2 act on the states Im,j) it 
results 

C1 Im,j) = C2 Im,j) = j(j + 1) Im,j), (76) 

where j is the angular-momentum eigenvalue. Thus, 
once again, we get only a fraction of the possible 
unitary irreducible representations of the 0(4, 1) 
group.lS,16 

In general it is not clear how one can construct 
unitary irreducible representations of a noncompact 
group from the noncompact subgroup of the original 
group. This problem is important especially when the 
quantum nJlmbers of the maximal compact subgroup 
of the noncompact group do not suffice to completely 
label the basis vectors of a unitary irreducible repre­
sentation of the whole noncompact group. Recently, 
this problem has been attacked by Mukunda for the 
cases 0(2, 1) and 0(3, 1) from 0(1, 1) and 0(2, 1), 
respectivelyY 

In the case considered here, where the homogeneous 
part of the Poincare group is the noncompact group 
0(3, 1), the above-mentioned problem comes to the 
fore. From the definition of the generators X Il and 

11 N. Mukunda, Syracuse University report No. NYO-3399-103, 
106. 
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their structures both for negative and positive energies, 
it is obvious that the Casimir operator values [Eqs. 
(74) and (75)] do not change. Thus, every proper 
unitary irreducible representation of the de Sitter 
group 0(4, 1) obtained here is perhaps built from 
the representations of the Poincare group correspond­
ing to both positive and negative energies. 

VI. CONCLUSION 

We have given a prescription to construct the homo­
geneous Lorentz group in (n + 1) dimensions from an 
inhomogeneous rotation group in n dimensions. Then 
this prescription of constructing a new basis for the 
homogeneous Lorentz group has been utilized to 
study the unitary irreducible representations of the 
groups 0(2,1), 0(3,1), and 0(4,1). It is found out 
that in the 0(2, 1) case one gets only those unitary 
irreducible representations corresponding to the Casi­
mir-operatorvalue C = -1 (Dr and q in Bargmann's 
notation) and in the 0(3, 1) case one gets unitary 
irreducible representations corresponding to the 
Casimir operator C2 = 0 and Cl = h2 

- 1,12 The 
"extension" technique gives only those unitary 
irreducible representations corresponding to the Casi­
mir-operator values Cl = j(j + 1) = C2 for the de 
Sitter group 0(4, I). Even though we are unable to 
generalize our result to the case O(n, I), it is expected 
that one does not get all the unitary irreducible 
representations by the "extension" procedure. Never­
theless, it is relevant to point not that the representa­
tions obtained this way correspond to physically 
interesting cases and if one is interested in limiting 

JOURNAL OF MATHEMATICAL PHYSICS 

the number of representation for a particular group by 
defining the generators in a special way (this is the 
ca.se for the noninvariance groups), the above pro­
cedure is usefuJ.18 Anyway, for groups of the type 
considered here one can use the "master analytic 
representation" to obtain the representations by 
exploiting the fact that the Lie algebras involved have 
the same complex Lie algebras. l9 

It is to be mentioned that by defining generators of 
the type given by Eq. (12) 

Xa = APa + [1/2(pcPc)i][Mab ,Pb]+' 

with a variable parameter A, one can obtain a much 
wider class of representations than those obtained 
here for the groups 0(2, 1),0(3,1), and 0(4,1).20 But, 
in the foregoing discussion A is chosen to be zero so as 
to maintain the time-reversal invariance. Thus, it 
transpires that this time-reversal invariance is respon­
sible for eliminating the other unobtained representa­
tions. If one is primarily interested in obtaining the 
representations of the group O(n, 1) from IO(n), one 
can then use the above Xa with variable A without 
worrying about the time-reversal invariance, but one 
has to impose this condition if Xa is to be identified 
with some physical operator.3 
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For a "long-range" potential such as the Coulomb 
potential, one can still2 give a presentable scattering 
theory, but the theorems involved are more compli­
cated, because the usual method of defining the M011er 
wave matrices does not work. In these circumstances, 
it is attractive to conjecture that one might be able 
to avoid the complications due to "long-range" 
potentials by considering the theory in some sense 
as the limit of theories in which the interactions are 
better behaved. In a previous paper3 we studied the 
method of adiabatic switching in this context, and 
concluded that it was not possible to view the theory 
of Coulomb scattering as the limit of adiabatically 
switched Coulomb-scattering theories, and that 
therefore the usual method of adiabatic switching was 
unlikely to produce useful results for other long-range 
potentials. In the present paper, which may be 
considered as a sequel to Ref. 3, we will consider the 
problem of viewing a nonrelativistic scattering 
theory as the limit of "screened" scattering theories. 
The "screened" scattering theories are obtained by 
introducing in the original theory a screening function, 
or spatial cutoff, in order to obtain a better-behaved 
interaction. Since similar procedures are of interest 
in quantum field theory, it is hoped that the results 
obtained here will shed some light on those procedures 
at the same time that they give insight into the 
structure of nonrelativistic scattering theory. 

In detail, the procedure to be investigated in this 
paper is the following: 

Given the Hamiltonian 

H = Ho + Vex) = -11/2m + Vex) (1) 

(11 is the Laplacean, Va real multiplicative operator), 
define a scattering matrix as follows: 

(a) Replace H by the screened Hamiltonian 

H, = Ho + e-'/x/V(x) = Ho + Y.(x). (2) 

(b) Solve the Schrodinger equation (Ii = I) 

iatp(t)/at = H,tp(t), (3) 
by writing 

(4) 

(c) Form the operators 

O,(t) = eiH.t~-iHot (5) 

and prove the existence of the "screened M0ller 
wave matrices" 

O~ = lim O.(t). (6) 

(d) Prove the existence of the operators 

oot = lim O~ 
,~o 

2 J. Dollard, J. Math. Phys. 5, 729 (1964). 
3 J. Dollard, J. Math. Phys. 7, 802 (1966). 

(7) 

and use them to define the scattering matrix 

So = (Oci)*Oo, (8) 

or alternatively, if it is suspected that the limits in (7) 
do not exist, 

(d') Define the screened S matrix S. by 

S. = (O:-)*O~ 
and prove that the limit 

S~ = lim S. 

(9) 

(10) 

exists. Then define the scattering matrix as S~. 
[Naturally, if the strong limits in (6) exist, then the 
limit in (10) exists and So = S~]. 

This procedure is offered as a substitute for the 
usual method, which is as follows: 

(a) Solve the Schrodinger equation without switch­
ing 

iatp(t)/at = Htp(t), 
by writing 

tp(t) = e-iHttp(O). 

(b) Form the operator 

(11) 

(12) 

O(t) = eiHte-ilIot. (13) 

(c) Prove the existence of the operators 

O± = lim O(t) (14) 
t-+±oo 

and use them to define the scattering matrix 

S = (0+)*0-. 

It is hoped that: 

(15) 

(1) When O± of (14) exists, then ot of (7) also 
exists, and 

O± = Oot, 

so that the screened theory yields the usual M0ller 
wave matrices as € -- O. 

(2) When O± of (14) does not exist, then ot of (7) 
or at least S~ of (14) can still be defined, and used to 
define a reasonable S matrix for the theory. 

In the following, we investigate the method of 
screening for potential scattering as outlined above, 
and the truth of statements (1) and (2). In passing, 
we shall mention some results on n-body scattering. 

Before proceeding with the analysis, the author 
would like to note that, although the results proved 
below concern the screening procedure in which 
Vex) is replaced by e-·1xl V(x) , they can easily be 
extended to other types of screening procedures. For 
instance, if g is a real function of Ixl which belongs to 
Schwartz's space4 S of COO functions which, along 

• L. Schwartz, Theorie des distributions (Hermann and Cie., 
Paris, 1957), Vol. II, pp. 89ff. 
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with all their derivatives, die off for large values of 
Ixl faster than any inverse power of lxi, and if g(O) = 
1, then all the results proved below hold for the 
screening procedure in which Vex) is replaced by 
geE IxI)V(x). [In this case, it would be necessary to 
replace e-«s/lIl)( -~)! by g[(Es!m)( -~)!] in Eq. (37).] 
Some examples of such functions g are: g(lxl) = 
e-[X l

", g(lxi) = cos Ixl2 e-1xI2 . 

I. EXISTENCE OF THE SCREENED M~LLER 
WAVE MATRICES 

Orientation: We work in the Hilbert space 1:2(R3) of 
square-integrable functions of one three-vector variable 
x. The 1:2 norm ofthefunction/will be denoted by 11/11. 
We consider a Hamiltonian of the type (1) acting on 
this space, where V satisfies either or both of Kato's 
conditions5 : 

(KI ) Vex) is square-integrable, or 
(K2) Vex) is locally square-integrable and bounded 

for large Ixl; i.e., the integral of W(x)1 2 over any 
bounded set is finite, and there exist constants M and 
R such that I V(x) I s M when Ixl ~ R. 

Denote by ~(t» the domain of the operator t). 

Then if V satisfies (KI ) or (K2), it follows from Kato's 
work that ~(V) 2 ~(Ho) and that there exist non­
negative constants ex and f3 such that if IE ~(Ho), 
then 

IIV/II sex II Hoi II + f3llill. (16a) 

Also, ex can be chosen as small as desired. It follows 
that H is self-adjoint with ~(H) = ~(Ho). After a 
little juggling of (16a), one concludes that there exist 
constants ex', f3', (ex' as small as desired) such that if 
IE~(Ho), 

IIV/II sex' II HI II + f3' Ilill· (16b) 

In the sequel, we shall make use of the fact that ~(Ho) 
contains Schwartz's space4 S, mentioned above. 

By inspection, if Vex) satisfies (K1) or (K2) , then 
e-f1xl Vex) satisfies (Kl ). This fact establishes the 
existence of the switched Moller wave matrices, 
because it is known1 that the (usual) Moller wave 
matrices exist for potentials satisfying (Kl ). For 
future reference, we mention that if V satisfies (K1) 

or (K2), then in order to establish the existence of the 
(strong) limits in (14), it suffices to prove the con­
vergence of the integrals (to and t~ are real numbers) 

i~ lIVe-iHot tpll dt, f:1I Ve-illottpli dt (17) 

for all tp belonging to a set dense in [2. This set may be 

5 T. Kato, Trans. Am. Math. Soc. 70, 195 (1951). 

conveniently chosen as Schwartz's space S. [If tp E S, 
then e-iHottp E S s:; ~(Ho) s:; ~(V), so the integrands 
are well defined.] The convergence of the first integral 
in (17) establishes the existence of Q+, and one has 

II(Q+ - Q(t»tpll = Ill' Xl ~, (Q(t')tp) dt'li 

= Iii l' Xl eiHt'Ve-iHot'tp dt'// S f" lIVe-iHot'tpll dt' (18) 

and the similar equation for Q-. The right-hand side of 
(18) approaches 0 as t -+ + 00. If V satisfies (Kl ), 

the integrals in (17) always converge, as was shown 
by Cook.l 

Results in the n-body case: In the n-body case, we 
need only redefine Ho and V by 

n t. 
Ho=L-_k, 

k=l 2mk 
n 

V = L Voixj) + L V;ixi - Xj), (19) 
:i=1 l:S;i<jSn 

and assume that each Vij(O S i < j S n) satisfies 
(K1) or (K2). Naturally, we also replace [2 in one three­
vector variable by [2 in the n three-vector variables 
Xl ... xn • Then defining 

n 

H H + ~' -flx;lv: ( ) 
f = 0 ..::.. e OJ Xj 

j=l 

+ ~ e-f1x,-x;IV.(x. - x.) 
£.., l} 'l J ' (20) 

ISi<jSn 

we find that the limits corresponding to (6) (and their 
analogs for channels other than the channel in which 
all particles are asymptotically free) exist. 

Having established the existence of the switched 
Moller wave matrices for all potentials satisfying 
(Kl ) or (K2), we now turn to the more difficult question 
of the existence of the limit in Eq. (7). 

II. CONVERGENCE OF Of± AS € -+ 0 

In this section we do two things. First, for a large 
class of theories in which the limit Q± in (14) is 
known to exist, we show that the limit Q± in (7) also 
exists and equals Q±. In other words, we show that 
in a large class of theories in which the usual methods 
of scattering theory apply, the method of screening is 
also applicable and gives the same results. We then 
show that the method of screening is not applicable 
if Vex) is a Coulomb potential. 

In all cases with which the author is familiar l in 
which the limit (14) is known to exist, the potentials 
involved have satisfied either (Kl ) or (K2) and the 
existence of the limit in (14) has been or can be 
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proved by establishing the convergence of the inte­
grals in (17). [It has been remarked that (K1) by itself 
implies the convergence of the integrals in (17). 
However, there are potentials not satisfying (K1) 

for which the integrals in (17) converge and D ± 

exist, as shown by Jauch and Zinnes.1 In fact, con­
vergence can be proved for any potential satisfying 
(K2) which falls off like lxi' for large lxi, with y < -1. 
Note that this requirement excludes Coulomb 
potentials, for which we would have y = -1.] We 
now show that for any potential satisfying (K1) or 
(K2) and for which the integrals in (17) converge, 
the method of screening is applicable; namely we 
have: 

Theorem 1: Suppose that Vex) satisfies (K1) or 
(K2). Suppose that the integrals in (17) converge for all 
rp E S. Let VE(x) = r· 1xl Vex) and define H, H., 
D,(t), D(t) as in (1), (2), (5), and (13). Then the 
strong limits 

lim D(t) = D± 
t--+±oo 

and 
lim Dlt) = D~ 

exist, and furthermore we have 

lim D~ = D±. 

(21) 

(22) 

(23) 

Proof We have already noted that under the 
hypotheses of the theorem the strong limits in (21) 
and (22) exist. (As the strong limits of unitary opera­
tors, D± and D.± are, of course, isometric.) It remains 
to prove (23). In order to do this we first remark that 
the convergence in (22) is uniform in E. This can be 
established as follows: We have, for rp E S, 

II(Dt - O.(t»rpll ~ foo II v.e-iHotrpll dt 

~ foollVe-iHotrpll dt, (24) 

since I V/x)1 = e-,Ixl I V(X) I ~ I V(x)l. Now the right­
hand side of (24) is clearly independent of E, and 
approaches 0 as I -4- + 00 since the first integral in (I 7) 
converges. Thus by taking I large enough, the left­
hand side of (24) can be made as small as desired, 
independent of E. Since S is dense in [2, Dt is iso­
metric and O(t) is unitary, this result extends immed­
iately to any rp E [2: For all rp E [2, O.(/)rp converges 
to Dtrp as 1-4- + 00, uniformly in E. The proof for 
uniform convergence to ot as I -4- - 00 is no different. 

We next show that for any fixed t we have, in the 
sense of strong convergence, 

lim 0lt) = OCt). (25) 
..... 0 

In order to prove (25), it suffices to show that 

(26) 
• .... 0 

and since the operators in (26) are unitary, we need 
only show that (26) holds on S. If rp E S we have 

II(eiH• t - eiHt)rpll = 11(1 _ e-ilI.teiHt)rpll 

= 11-{ ~, (e-ilI.t'eiHt'rp) dt' II 

= II j f e- H•t' (V. - V)eiHt'rp dt' II 

~ fll(v. - V)eiHt'rpll dt', (27) 

N ow the expression II (V. - V)eiHt'rp II is bounded 
in I. This can be seen using (16b) as follows: 

II(V. - V)eiHt'rpll ::;; II V. eiHt 'rpII + II VeiHt'rpll 

~ 2 II VeiIlt'rpll ~ 2(oc' II HeiHt'rpll + fJ' IleiHt'rpll) 
= 2(oc' IIHrpl1 + fJ' Ilrpll). (28) 

Here we have also made use of the fact that I V.(x)1 ::;; 
I V(x) I and the fact that rp E S s; <JJ(H). It should also 
be clear (e.g., from Lebesgue's dominated con­
vergence theorem) that for each fixed value of I' 

we have 

lim II(V. - V)eiIlt'rpll = O. (29) 

Because of (28) and (29) we can apply Lebesgue's 
dominated convergence theorem to the right-hand side 
of (27) to conclude that 

lim t II(V. - V)eiHt'rpll dt' = 0, (30) 
..... 0 Jo 

completing the proof of (26) and thus of (25). 
We now present the proof of (23). Let rp E [2 and 

let 'f} > 0 be given. We must show that when E is small 
enough we have 

(31) 

Since the argument for D- is no different that that for 
0+, we present only the latter: For any I we have 

II(Ot - O+),pll ::;; II(Ot - O.(t»rpll 

+ II(O(t) - O+)rpll + II(O,(t) - O(t»II. (32) 

Since OCt) converges to 0+ and 0E(/) converges 
uniformly in E to Dt as 1-4- + 00, we can choose a t so 
large that each of the first two terms on the right-hand 
side of (32) is less than 'f}/3;independent of the value 
of E. Fixing the value of I, we can then, by (25), 
choose E so small that the third term on the right-hand 
side of (32) is less then 'f}/3, and this establishes 

11(0+ - Ot)rpll < 'f} (33) 
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for small enough €, as desired. This finishes the proof 
of Theorem I. 

Thus we see that when the potential satisfies the 
hypotheses of Theorem I, the screening p~oced.ure 
can be carried through and gives results IdentIcal 
with those of the usual theory, as was to be hoped. 
[Compare statement (1) of the Introduction.] 

Result in the n-body case: Theorem I remains true 
in the n-body case if H is replaced by Ho + V of 
(19), H, is given by (20), and the obvious replace­
ments are made for Q(t) and QJt) [e.g., Q(t) = 
eiHte-iHot, with Ho given by (19)]. Theorem I then 
states that the M0ller wave matrix for the channel 
in which all particles are asymptotically free in the 
usual theory agrees with the limit as € ---+ ° of the 
M0ller wave matrix for the channel in which all 
particles are asymptotically free in the screened 
theory. . 

We now turn to an investigation of the screenmg 
procedure for the Coulomb potential, taking 

H = -1)./2m + ele2/lxl. (34) 

The analysis of the screening procedure for this 
potential is quite analogous to the. analysi~ of. the 
adiabatic switching procedure for thIS potentIal gIven 
in Ref. 3. It is also rather messy, and consists princi­
pally of a rather tedious checking of details ana~ogo~s 
to those given in Ref. 3 for the case of adlabat~c 
switching. For this reason, the results of the analysIs 
are given without proof. 

Just as in Ref. 3, we introduce the matrices Qt 
which correctly give the Coulomb scattering matrix 
elements. These cannot be obtained as the limits of 
Q(t) of (13) with H given by (34), but they can be 
obtained by a different method, described in Refs. 
2 and 3. Since the Coulomb potential satisfies (K2) , 

the screened M0ller wave matrices Q(,~ forthe Coulomb 
potential exist, and we might hope that they converge, 
as € ---+ 0, to Qc± , or at least that the screened S matrix 
converges to (Qn*Q~. However, this is not the case, 
as shown by: 

Theorem 2: Let Qe~ be the screened M0ller wave 
matrices for the Coulomb potential e1e2/lxl. Let 

SeE = (Q~)*Q~ (35) 

be the screened S matrix for the Coulomb potential. 
Then Q ± and S converge weakly to zero as E ---+ 0. 

CE Cf 

Theorem 2 implies that Q~ and So< do not converge 
strongly as € ---+ 0. For Q~ this is obvious, because the 
operators Qe~ are clearly isometries and their strong 
limit, if it existed, would have to be an isometry. It 
would also have to equal their weak limit, which is 0, 
and not an isometry. Actually, the same argument 
can be applied to SeE' because Sc, is also an isometry, 
although this latter statement is not so obvious. We 
refer the reader who wishes to convince himself that 
S is isometric to the work of Ikebe6 who has given a c, 
general discussion of potential-scattering theory 
which covers the case at hand. 

Theorem 2 also shows that the weak limits of Q~ 
and S are totally useless in defining an S matrix for c, 

the Coulomb-scattering problem, so that the approach 
to this problem via the method of screening outlined 
in the Introduction is fruitless. 

For the interested reader, we include a brief 
account of the behavior of Q,~ when E is small: As in 
the similar situation in Ref. 3, the difficulty with 
these operators is that they reproduce too faithfully 
the logarithmic distortion caused by the long range of 
the Coulomb potential. Namely, as € ---+ 0, the differ-
ence between Q± and Q±P± tends (strongly) to zero, 

CE" C f 

where 

and 
mel e2 J 00 e-'(S/ m)( - I).)! d 

L, = --£ S 
(-I).) to S 

mele2110 (-2tol).) , (37) 
+ (-Ml!" g m 

where to > ° and I). is the Laplacean. As € ---+ 0, the 
integral in the definition of L, diverges logarithmically, 
and p± "oscillates itself to death," so to speak. 

In c'onclusion, then, we have shown that for a large 
class of potentials for which the usual methods of 
scattering theory are applicable, the method of screen­
ing is also applicable and gives correct results. How­
ever, for the Coulomb potential the method produces 
no information. As discussed in Ref. 3, the Coulomb 
potential is one of the "mildest" possible long-ra~ge 
potentials. The fact that the method of screenmg 
breaks down for the Coulomb potential makes it 
seem unlikely that this method can be used to produce 
reasonable results for other long-range potentials. 

6 T. Ikebe, Arch. Rat!. Mech. Anal. 5,1 (1960). 
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The geometric theory of neutrinos proposed by Penney is investigated. It is shown, from the conditions 
imposed, that the space-time is conformally flat. All solutions of the field equations are found and 
attention is paid to the limiting process described by Penney. 

1. INTRODUCTION 

Penny! has shown that any space-time which 
satisfies the usual Einstein-Maxwell field equations for 
a null electromagnetic field, together with the condition 

Rab;c = 0, (1.1) 

reproduces the physics of a neutrino field. Here Rab 
is the Ricci tensor of the space-time and the semi­
colon denotes covariant differentiation. Such fields 
are characterized by Penney as the limit, as Rcd RCd -->- 0, 
of the algebraically general electromagnetic fields 
satisfying 

(1.2) 

The usual Rainich2 conditions are imposed on the 
space-time, namely, 

R C
c = 0, 

R/R'b = lObaR/uR /
g
, 

Roo ~ 0, 

(1.3) 

(1.4) 

(1.5) 

where the metric tensor takes the diagonal form 
(+ 1, -1, -1, -1) in a local Cartesian coordinate 
system. 

It is shown, in Sec. 2, that the conditions (1.2) to 
(1.5) imply that the space-time is conformally flat. 
All space-times satisfying the conditions are found 
in Sec. 3 and the limiting process is discussed in 
Sec. 4. 

2. SOME CONSEQUENCES OF THE 
CONDITIONS IMPOSED ON THE SPACE-TIME 

Contracting Eq. (1.2) with Rab gives 

(t - RabRab)(R/gRfY);c = O. 

Hence either (RfgRf9);c = 0 or RabRab = t. The last 
condition implies that (RfgRfg);c = 0 and so in both 
cases Eq. (1.2) yields 

Rab;c = O. (2.1) 

This condition is equivalent to, and subsequently 

1 R. Penney, J. Math. Phys. 6, 1309 (1965). 
2 G. Y. Rainich, Trans. Am. Math. Soc. 27, 106 (1925). 

replaces, condition (1.2). From (2.1) 

where Reacd is the Riemann tensor of the space-time. 
With condition (1.3), the Weyl tensor ceacd is given by 

Hence, using (1.4), 

ceacdReb = ReacdReb - HRdbRac - RcbRad 

+ lRefReigacgbd - gadgbc)]. 

Since the square bracket is antisymmetric in a and b 
it follows that 

(2.2) 

For an algebraically general electromagnetic field, 
this equation implies that 

Cabcd = O. (2.3) 

This is easily verified by using a null tetrad3 fa, na, 
rna, and Ina with fa and na principal null vectors of the 
electromagnetic field. 4 Then 

Reb = IAI2 (lenb + nib - tgeb) 

and Eq. (2.2) becomes 

Contracting with lamb gives 

CebCdlemb = O. 

It follows from this that 

CabCdlamb/Cmd = Cabedfamb[Cnd = Cabedfambncfiid = ° 
and, because of the symmetry between [a and nU , 

The vanishing of the above five independent complex 
tetrad components of Cabed is sufficient to prove that 

3 E. Newman and R. Penrose, J. Math. Phys. 3, 565 (1962). 
4 J. L. Synge, Relativity, the Special Theory (North-Holland 

Pub!. Co, Amsterdam, 1956), p. 325. 

625 
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the Weyl tensor is zero. The space-time is therefore 
conformally flat. 5 

3. SOLUTION OF THE FIELD EQUATIONS 

In this section all conformally flat space-times 
satisfying conditions (1.3), (1.4), and (2.1) are found. 
The metric is assumed to have the form 

(3.1) 

and Cartesian coordinates (t, x, y, z) are chosen in 
the flat space so that 1'J ij = 1'Jij = diagonal (+ I, -I, 
-1, -1). 

The Christofel symbols and Ricci tensor of the 
space-time can now be written 

r~c = _H-l[(j~cf>.c + b~cf>.b - 1'Jad1'Jbccf>.d] (3.2) 
and 

4cf>2Rab = - 2 cf> [2 cf>.ab + 'lJabcf>.~] 
+ [2cf>.acf>.b + 41'Jabcf>.ccf>'"L (3.3) 

where indices are raised by the flat space metric 1'Jab• 
Condition (1.3) gives 

(3.4) 
so that 

4cf>2Rab = -4cf>cf>.ab + 2cf>.acf>.b + 1'Jabcf>.ccf>."· ,(3.5) 

Condition (2.1) now becomes 

4cf>Rab;c = -4cf>.abc + 1'Jab(cf>-l cf>.dcf>.d).c 

+ 1'JbC(cf>-l cf>.dcf>,d).a + 1'Jca(cf>-l cf>.dcf>,d),b = O. (3.6) 

The integrability condition for this is 

'lJbC( cf>-lcf>,dcf>.d).ae + 1'JcU< cf>-lcf>.dcf>.d).be 

- 1'Jb.( cf>-lcf>.dcf>.d).ac - 1'Jei cf>-lcf>.acf>.d).bC = O. (3.7) 

Contracting on ae gives 

4( cf>-l cf>. acf>.d) , bc = 1'Jbc( cf>-l cf>. dcf> ,d). e" . (3.8) 

Equation (3.7) is satisfied by virtue of Eq. (3.8). The 
general solution of Eq. (3.8) can be written as 

cf>-lcf>.dcf>.d = -!Ax· x + a· x + B, (3.9) 

where A, B, and the oca are constants, and the dot 
product is defined by 

v· w = 1'JabVawb. 

Substituting (3.9) into (3.6) gives 

4cf> abc = 1'Jab( - A 1'Jcd~ + occ) 

+ 1'Jbc(-A1'Jad~ + oca ) + 1'Jca(-A1'JbdXd + ocb)· 

The general solution of this equation is 

4cf> = -tA(x, X)2 + Ha· x)(x. x) 

+ ~. x - C + TabxaXb, (3.10) 

where fJa, C, and Tab are constants. Substituting 
(3.10) into (3.4) gives 

(3.11) 

Further relations among the constants are obtained by 
substituting (3.10) into (3.9) and comparing powers 
of the coordinates. These relations are 

a· a = -2AB, (3.12) 

and 

~. ~ = 4BC, 

1'JadTdbOCb = -tAfJa + Boca, 

1'JadTdb fJb = -Coca + BfJa, 

4Tfa Tgb 1'J,g - 4BTab - 2AC1'Jab 

(3.13) 

(3.14) 

(3.15) 

+ (~ . a)1'Jab - ocCfJd(1'Jca1'Jdb + 1'Jda'IJcb) = O. (3.16) 

Finally, the condition (1.4) is identically satisfied and 

4RfgRIY = B2 + AC - a • ~. (3.17) 

4. THE LIMITING PROCESS 

The only question to be answered now is whether 
the limit as R[gRfg ~ 0 does in fact yield a null 
electromagnetic field. Consider the case A ':;tf O. A 
change of origin x a ~ xa + 2oca/A sets oca = O. 
Equations (3.12) and (3.14) then yield B = fJa = O. 
Substituting into (3.10) gives 

4cf> = -tA(x. X)2 - C + Tabxaxb, (4.1) 
where 

(4.2) 
and 

4TfaTgb1'JIY - 2AC1'Jab = O. (4.3) 

Of course (4.1) can be further simplified by a Lorentz 
transformation and also by a change of scale xa ~ AXa• 

In the limit as RfyRfo = tAC tends to zero, the con­
ditions (4.2) and (4.3) imply6 that there exist constants 
ka and Va' satisfying 

kaVb1'Jab = kaVb1'Jab = 0, Vavbrtb = 1, 

such that 

Tab = kakb' 

Substituting (4.4) and (4.1) into (3.5) yields 

32cf>2Rab = 2A1'Jac'IJbdXC~[kfXfkgxO - C] 

-4kakb[ -tA(x· X)2 - C] 

(4.4) 

-A(x· X)kfXf[kb1'JacXc + ka1'JbcXC]. (4.5) 

In the limit as C ~ 0, 

Rab = FacFbdgCd 

5 L. P. Eisenhart, Riemannian Geometry (Princeton University • J. A. Wheeler, Geometrodynamics (Academic Press Inc., New 
Press, Princeton, N.J., 1925), p. 92. York, 1962), p. 247. 
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with 

where 

expansion-free. Such fields have been discussed by 
(4.6) Kunde and it can easily be shown that, for null 

electromagnetic fields with Rab;C = 0, the metric can 
be put in the form 

and 
Va = (V,XI)'YJacXc - t(Xc.x<i'YJCd)Va • 

A short calculation yields Fab;c = 0 and so Maxwell's 
equations are trivially satisfied. A similar conclusion 
is arrived at when A = O. 

The work presented here was motivated by the 
need to investigate the nature of the limiting process. 
For a null electromagnetic field, Eq. (2.2) does not 
necessarily imply that the space-time is conform ally 
flat. This suggests that not every null electromagnetic 
field satisfying (1.1) can be found as the limit of a 
nonnull electromagnetic field satisfying (2.1). In fact, 
all null electromagnetic fields satisfying Rab;c = 0 can 
be found (this, of course, has nothing to do with the 
geometrical approach). A short calculation shows that 
the principal vector of such an electromagnetic field 
must be geodesic, hypersurface-orthogonal, and 

JOURNAL OF MATHEMATICAL PHYSICS 

ds2 = -dz dz - 2 du dv - H du2, (4.7) 
where 

o3Hjozozou = oHjov = O. (4.8) 

The condition for the space-time (4.7) to be con­
formally flat is 

o2Hjoz2 = o. 

This is not identically satisfied by those space-times 
satisfying Eq. (4.8) and so not all neutrino fields can 
be obtained from the geometric conditions given by 
Penney. 

The space-times obtained in Sec. 3 have also been 
obtained, in a different form, by Bertotti8 and 
Stephani.9 

, W. Kundt, Z. Physik 163, 77 (1961). 
8 B. Bertotti, Phys. Rev. 116, 1331 (1959). 
9 H. Stephani, Commun. Math. Phys. 5, 337 (1967). 
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The Schrodinger equation for the hydrogen atom separates in three coordinate systems: spherical, 
parabolic, and prolate spheroidal. The separability operators associated with the separation constants 
for these three systems are exhibited and discussed. Also, for these systems, the invariance ladder operators 
which transform a simultaneous eigenfunction of the separability operators into a different simultaneous 
eigenfunction of the same energy are discussed with reference to the elements of the 0, Lie algebra. 
Quantization of the Kepler problem in terms of prolate spheroidal coordinates is accomplished and 
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I. INTRODUCTION 

The application of symmetry groups to elementary 
particles has revived interest in the structural properties 
of the Schrodinger equation for the hydrogen atom.! 
The Coulomb problem is one with known solutions 
for which the invariance group (04) of the Hamilton­
ian and its relationship to the energy degeneracy 

• Supported in part by the National Science Foundation under 
Grant No. GP7695. 

t Assisted by a Wayne State University Faculty Research Fellow­
ship. 

1 For example, see M. Bander and C. Itzykson, Rev. Mod. Phys. 
38, 330, 346 (1966) and references therein. 

have been exhaustively studied. Moreover, the larger 
noninvariance', noncompact group [the de Sitter 
0(4, 1) group] connects bound states belonging to 
different energy levels. 2 Such a connection offers an 
algebraic approach that might be applicable to the 
energy (mass) level structure of the elementary 
particles. 

• E. C. G. Sudarshan, N. Mukunda, and L. O'Raifeartaigh, 
Phys. Letters 19, 322 (1963); H. Bacry, Nuovo Cimento 41A, 222 
(1966); M. Y. Han, Nuovo Cimento 42B, 367 (1966); R. H. Pratt 
and T. F. Jordan, Phys. Rev. 148, 1276 (1966); R. Musto, Phys. Rev. 
148. 1274 (1966). 



                                                                                                                                    

NOTE ON THE GEOMETRIC THEORY OF NEUTRINOS 627 

with 

where 

expansion-free. Such fields have been discussed by 
(4.6) Kunde and it can easily be shown that, for null 

electromagnetic fields with Rab;C = 0, the metric can 
be put in the form 

and 
Va = (V,XI)'YJacXc - t(Xc.x<i'YJCd)Va • 

A short calculation yields Fab;c = 0 and so Maxwell's 
equations are trivially satisfied. A similar conclusion 
is arrived at when A = O. 

The work presented here was motivated by the 
need to investigate the nature of the limiting process. 
For a null electromagnetic field, Eq. (2.2) does not 
necessarily imply that the space-time is conform ally 
flat. This suggests that not every null electromagnetic 
field satisfying (1.1) can be found as the limit of a 
nonnull electromagnetic field satisfying (2.1). In fact, 
all null electromagnetic fields satisfying Rab;c = 0 can 
be found (this, of course, has nothing to do with the 
geometrical approach). A short calculation shows that 
the principal vector of such an electromagnetic field 
must be geodesic, hypersurface-orthogonal, and 
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ds2 = -dz dz - 2 du dv - H du2, (4.7) 
where 

o3Hjozozou = oHjov = O. (4.8) 

The condition for the space-time (4.7) to be con­
formally flat is 

o2Hjoz2 = o. 

This is not identically satisfied by those space-times 
satisfying Eq. (4.8) and so not all neutrino fields can 
be obtained from the geometric conditions given by 
Penney. 

The space-times obtained in Sec. 3 have also been 
obtained, in a different form, by Bertotti8 and 
Stephani.9 

, W. Kundt, Z. Physik 163, 77 (1961). 
8 B. Bertotti, Phys. Rev. 116, 1331 (1959). 
9 H. Stephani, Commun. Math. Phys. 5, 337 (1967). 
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The invariance group for a Hamiltonian is con­
nected with the existence of a coordinate system in 
which the Schrodinger equation is separable. The 
separation constants which occur are the eigenvalues of 
certain operators which have the separated product 
solutions as their eigenfunctions. These (separability) 
operators commute with the Hamiltonian and are 
related to the elements of the Lie algebra characterizing 
the problem. For a Coulomb potential the Schrodinger 
equation separates in three coordinate systems: spheri­
cal, parabolic, and prolate spheroidal. The relevant 
separability operators for the first two systems are 
well known, but to the authors' knowledge, the 
operators associated with the prolate spheroidal 
coordinate system have not been exhibited. In this 
paper we discuss these operators and the related 
invariance ladder operators. We also obtain the 
semiclassical quantization conditions on the eigen­
values of the prolate spheroidal description by 
quantizing the action integrals in the manner of 
Bohr-Sommerfeld. 

II. REVIEW OF SPHERICAL AND 
PARABOLIC SEPARATIONS 

The space-time separated (i.e., time-independent) 
Schrodinger equation for the Coulomb problem is 

Ho/ = Eo/, (1) 

where the Hamiltonian 

H = (p2/2M) - (A/r) (2) 

is the operator associated with the separation constant 
E. Here, p = -ihV, A is the strength of the interaction 
(A is positive for the attractive case), and r = [X2 + 
y2 + z2]i. Also, we adopt the caret notation for the 
vector cross product, as in L = rAp. Equation (1) is 
separable in spherical coordinates: 

r . k = r cos (), 

r . f = r sin () cos cp, (3) 

r . j = r sin () sin cp, 
where f, j, k are a right-handed triad of mutually 
orthogonal unit vectors, with k chosen as the direction 
of the polar axis. The (commuting) operators, of 
which the product solutions are eigenfunctions, 
corresponding to the separation constants are 

H, L2, and k. L. (4) 

The three operators L are the generators of SU2 

(or 0 3) and L2 is the Casimir operator of this group. 
In parabolic coordinates (confocal parabolas of 

revolution), 
fl=r+r.k, 
y=r-r.k, 

tan cp = (r . j)/(r • I). 
(5) 

Equation (1) also separates. As first shown by 
Bargmann,a the (commuting) operators associated 
with the separation constants, of which product 
solutions are eigenfunctions, are 

H, k· L, and k· R, (6) 

where R is the Runge-Lenz vector operator4 

R = t(p A L - LAp) - MAr/r. (7) 

The algebra of the related three operators 

A = (-2MH)-iR, (8) 

which is Hermitian when acting on bound states, 
together with the three operators L, closes on 0 4 : 

[Li' L j] = iliEijkLk ' 

[Li' Aj] = iliEiJkAk' 

[Ai, Aj] = iliEiJkLk. 

(9) 

In contrast to the case for separation in spherical 
coordinates, the separability operators [Eq. (6)] for 
the parabolic case do not contain a Casimir operator. 
The Casimir operator for 0 4 may be obtained by 
considering the linear combinations 

G(p) = (1/""2)(L + pA), p = ±1. 
One sees that 0 4 becomes SU2 X SU2 , since 

[G
(p) G(p')] - -" 'Ii G(p) 
i , j - upp'z €iik k , 

The Casimir operator iss 

no sum on p. 

G2 == G(l) • G(l) = G(-l) • G(-l) 

(10) 

(11) 

= H -1i2 - (A2M/2H)]. (12) 

Invariance ladder operators are defined to be those 
operators (which commute with the Hamiltonian) 
which transform a state of specified energy into a 
different state of the same energy. For the spherical­
coordinate separability operators H, L2, and L 3 , 6 the 
basic invariance ladder operators are7 

L, = L1 + iEL2 , 

[, = A3{(L2 + 1i2/4)! + EIi/2} + if.(A A L)a, (13) 

where f. = ± 1. These operators satisfy the commuta­
tion relations 

[H, L,] = [L2, L,] = 0, 

[La, L,] = f.IiL" (14) 

3 V. Bargmann, Z. Physik 99, 576 (1936). 
4 C. Runge, Vektoranalysis (B. G. Teubner, Leipzig. 1919), 

Vol. I, p. 70; W. Lenz, Z. Physik 24,197 (1923); see also W. Pauli, 
Z. Physik 36,336 (1926); V. Fock, Z. Physik 98, 145 (1935). 

5 Here we use the fact that R . R = 2MH(L' + h') + A'M'. 
• Here the unit vector k is taken in the 3-direction. 
7 The operator 1:; may be obtained most simply through a 

consideration of a linear combination of the elements of the Lie 
algebra that commute with La. It may also be obtained as a product 
of operators derived by the factorization method [see L. Infeld and 
T. E. Hull, Rev. Mod. Phys. 23, 21 (1951)], or for 1:+, by a simplifica-

tion of the expression (L_/+1
-

m A+(L+/-m . 
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and 
[H, [,] = [L3' [El = 0, 
[V, [.] = 2di[E{(V + 1i2/4)! + €1i/2}. (IS) 

Using the fact that the eigenvalues associated with V 
and L3 are, respectively, t(t + 1)1i2 and mli, and 
denoting a wavefunction of specified energy by 'Y t,m , 
it follows that8 

L.'Y t,m = 'Y t,m+, ' 

[.'Yt,m = ':I:"t+"m' (16) 

For the parabolic-coordinate separability operators 
H, Aa , and L 3 , 6 the basic invariance ladder operators 
are 

(17) 

where G(p) has been defined in Eq. (10), and p and € 

are independently ± I. These operators satisfy the 
commutation relations 

[H, G~p)] = 0, 

[La, G~p)] = dG~p), 
[Aa, G~p)] = €pIiG;p). 

(18) 

In the parabolic system, the eigenvalues associated 
with A3 and La are, respectively, m'li, and mli, so 
denoting a wavefunction of specified energy by 
'Y m',m' it follows that8 

G(phTP _ lTP 
E I m',m - T m'+€p,m+£' (19) 

For these wavefunctions, the distribution of allowable 
m', m eigenvalues is such9 that, for a given energy, 
it is impossible to change one eigenvalue by unity 
while keeping the other one fixed. 

III. SEPARATION IN PROLATE­
SPHEROIDAL COORDINATES 

The Schrodinger equation [Eq. (I)] separates in 

and the separated equations are 

()2'Ya(,p)/O,p2 = -m2'Ya(,p) , (22) 

{1i2[:~ W - 1) ~ - (~2 ~ 1)J 
+ a2~E ~2 + aAM~}'YI(~) = S'YI(~)' (23) 

{1i2[.£.. (1 - 'YJ2).£.. - m
2 J 

o'YJ o'YJ (1 - 'YJ2) 

a
2
ME } - -2- r/ - aAM'YJ 'Y2('YJ) = -s'Y2('YJ), (24) 

where m2 and s are separation constants. The operator 
having m as its eigenvalue is obvious, and the operator 
having s as its eigenvalue may be found by judiciously 
substituting for m2 and E (when acting to the extreme 
right) in terms of the associated operators. In this 
fashion we find that the (commuting) operators 
associated with the separation constants, of which the 
product solutions are eigenfunctions,1O are 

H, S, and Ie. L, (25) 
where 

S = V - a • R + !a2 M H. (26) 

Here R is the Runge-Lenz vector defined by Eq. (7). 
Alternatively, we may write the operator S in terms 
of the 0 4 Casimir operator G2 and generators A 
[see Eqs. (8) and (12)]. It is found that 

S = G2 - [A + (-!MH)ta] . [A + (-!MH)!a]. 

(27) 

The classical equivalent to the operator S is espe­
cially simple if one chooses a to be the vector from the 
force center to the other focus occurring in the 
problem. Classically, 

R = pAL - AMr/r, 

prolate-spheroidal coordinates: Setting 
(28) 

R· r = cos e, (29) ~ = a-l(r + Ir - ai), 

'YJ = a-l(r - Ir - ai), 

tan 1> = (r • j)/(f . I). 

(20) the orbit equation is 

This coordinate system involves ellipses and hyperbolas 
of revolution associated with the foci at f = 0 and 
r = a. Here [,j, Ie are the orthonormal triad mentioned 
previously, and a = ale where a is an arbitrary length. 
The wavefunction 'Y may be expressed as 

(21) 

I/r = (AM/V)[l + (RjJ..M) cos e]. (30) 

The vectors fmin and f max (associated with rmin and 
rmax) occur when e = 0 and n, respectively, so 

fmin = [V/(J..M + R)]RjR, 

f max = - [Vj(J..M - R)]RjR. (31) 

Consequently, our choice of a as the vector from the 
force center to the other focus means that 

8 The ladder operators given here have not been normalized to 
generate normalized wavefunctions from normalized wavefunctions. a = rmax + rmin = R/ (ME), (32) 

• See for example, L. I. Schiff, Quantum Mechallics (McGraw- ----
Hill Book Company, Inc., New York, 1955), 2nd ed., p. 89. ,0 In particular, S('F,'F.'Fa) =s('F,'F.'f'3)' 
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or equivalently 
(-tMH)!a = -A. (33) 

For this assignment of a, Eq. (27) indicates that Sis 
just equal to the Casimir quantity G2. 

However, in setting up the prolate-spheroidal 
coordinate system, a is not restricted to be any 
particular vector; so, in general, the operator S has 
no simple interpretation. One sees from Eq. (26) 
that the operator S is just a linear combination of the 
separability operators that occur in the spherical and 
parabolic cases (the operators k . Land H being the 
same). We have attempted to obtain the invariance 
ladder operators for the prolate-spheroidal eigen­
functions-by the techniques sketched in Ref. 7-
without success. Such operators exist, since one must 
surely be able to go from one state to any other state. 
If the invariance ladder operators could be written in 
closed form, the eigenfunctions could be obtained by 
integrating the equation 

Q'Y8Cmax) = 0, 

where Q is the raising operator for s, to give 'YsCmax)' 

Then other solutions could be obtained by suitable 
"lowering" and "raising" operators. Solutions of this 
problem would not only have general interest, but 
would also be useful in the two-Coulomb center 
problem (e.g., the ionized hydrogen molecule in the 
Born-Oppenheimer approximation), which separates 
only in prolate-spheroidal coordinates. 

IV. QUANTIZATION IN TERMS OF PROLATE­
SPHEROIDAL COORDINATES 

In order to obtain the invariance ladder operators 
for the prolate spheroidal eigenfunctions one must 
find the eigenvalue spectrum of S. We have attempted 
to solve this problem by invoking the Bohr-Sommer­
feld quantization rules in the equivalent classical 
problem. 

The Lagrangian for the classical Coulomb problem 
in prolate-spheroidal coordinates is 

L = Ma
2 [(e - r/) ·2 + (;2 - rl) ~2 + (e _ 1) 

8 (1 - r/) r; W - 1) 

x (1 - r;2)(PJ + 2A . (34) 
a(; + r;) 

Using the related Hamiltonian and the separated 
Hamilton-Jacobi equations, we can express the 
canonical momenta by 

[ 
-s P; AMa; 

P~ = ± .e - 1 - W - 1)2 + (e - 1) 

EMa2
;2 J! 

+ 2(e _ 1) (35) 

and 

[ 
s P; 

P" = ± (1 - r;2) - (1 - r;2)2 
AMa'f) 

(1 - 'f}2) 

_ EMa2
'f}2J! 

2(1 _ r/) , (36) 

where the separation constant E is the constant energy 
in this problem, P,p is the constant momentum canon­
ical to the ignorable coordinate e/>, and the separation 
constant s is the eigenvalue of S. For x being either; 
or r;, the corresponding momentum may be uniformly 
written 

Pre = ±[tEMa2x2 + AMax - s - p;(X2 - l)-l]y-!, 
(37) 

where the quartic y is 

y = tEMa2x4 + AMax3 
- (s + tEMa2)x2 

- AMax + (s - p;). (38) 

The sign that must be chosen for p",depends on whether 
the variable x is increasing or decreasing. The analysis 
which determines the sign is given in the Appendix. 

Applying the Bohr-Sommerfeld quantization proce-
dure to the action integrals, we obtain 

mh = f P.p de/> = lrrP4>' 

nh = f p~ d~, (39) 

n'h = f P" drJ. 

Here m, n, and n' are integers, h is Planck's constant, 
and the integration is to be carried out over a complete 
period of motion. The turning points of the paths 
involving p", (x being either; or r;) are those points 
at which dp",/dx becomes infinite. The only pointsll at 
which this occurs are the four roots of the quartic y, 
which are also the values at which p", equals zero. 
The definitions of ; and r; imply that -1 S; r; S; 1 
and that 1 S; ;; therefore we see that the two smallest 
roots of yare turning points corresponding to the r; 
integration and that the two largest roots of yare 
turning points for the ; integration. Thus we may 
label the roots (p,p ¥- 0) in the following fashion: 

-1 < 1X4 < 1X3 < 1 < 1X2 < IXI' (40) 

Using the fact that turning points for the paths occur 
on the x axis and that p", is symmetric with respect 
to the x axis, we find that 

nh = 2 (alp", dx, 
Ja. 

l
a3 

n'h = 2 Pxdx. a. (41) 

11 The variables ~ and 1) obtain the values ± I only for the special 
case P,p = O. In the present analysis, we consider only the situations 
for which P4> "" O. 



                                                                                                                                    

KEPLER PROBLEM IN PROLATE SPHERICAL COORDINATES 631 

Choosing the appropriate sign for POl' we may directly 
do the integration in terms of elliptic integrals. The 
results are 

-H-tEMa2(<X1 - <Xa)(<X2 - <X4)]!nh 

= [CK(k) + tEMa2(<X1 - <Xa)(<X2 - <X4)E(k) 

p;( <X2 - <Xa) + AM a( 1X2 - lXa) III (PI' k) - _::""!:"":-=----"--­
(1 + 1X2)(1 + lXa) 

X II ( , k) - P;(1X
2 - lXa) II ( "k)] (42) 

1 PI, (1X2 _ 1)(1 _ lXa) 1 PI' , 

where 

C = lXaAMa + 2p;(1 - 1Xi}-1 - 2s 

- tEMa 2(1X11X2 + lXaIX4)' 

k2 = [(<Xl - 1X2)(lXa - 1X4)]/[(1X1 - lXa)(1X2 - 1X4)], 

PI = -(1X1 - 1X2)/(1X1 - lXa), 

p{ = [(1 - <Xa)(lXl - 1X2)]/[(1X2 - 1)(1X1 - lXa)], 

p; = -[(1 + lXa)(lXl - 1X2)]/[(1 + 1X2)(1X1 - lXa)], 

and the notation of the Batemen project12 is used for 
the complete elliptic integrals K, E, and III of the 
first, second, and third kinds, respectively. 

The expression for n' may be obtained from Eq. (42) 
by means of the following replacements: n -+ -n', 
1X1 -+ lXa, lXa -+ lXI' 1X2 -+ 1X4, and 1X4 -+ 1X2. Under this 
replacement, k is invariant. One may relate the 
complete elliptic integrals of the third kind (the Ill's) 
that appear in the expressions for nand n'. Let us 
designate the p's for which the preceding replacement 
has been made by the subscript 2, e.g., 

P2 = -(lXa - <X4)/( lXa - 1X1)' 

Now it is a fact that 

(1 + v1)1I1(V1, k) + (1 + v2)111(v2, k) 

= K(k) + t1T( -V1V2/k2)!, (43) 

Appendix. One finds that the energy E is given by 

E = -2(d/h)2M(n + n' + ImJ)-2, (45) 

in terms of the quantum numbers for separation in 
prolate-spheroidal coordinates. 

The roots are functions of the coefficients of the 
quartic, i.e., functions of the separation constants E, 
Pt/>, and s. These functions may be explicitly deter­
mined by solving the quartic, but the resulting 
expressions are prohibitively complicated. However, 
in principle the <x's are known in terms of E, Pt/>, s. 
Since Pt/> = mh/(21T) and E is also known as a function 
of the quantum numbers n, n', and m [from Eq. (45)], 
appropriate substitutions can be made in Eq. (42) 
to give a functional relation for s involving the three 
quantum numbers. Thus s is implicitly determined. 
It appears unlikely that the eigenvalue spectrum of S 
(i.e., the values of s) can be written in closed form. 
Hence it appears that the ladder operators, which 
transform a single prolate-spheroidal state to another, 
are formidable nonpolynomial functions that also 
cannot be written in closed form.1a 

Note added in proof' The relation of the two­
centered Kepler problem to separation in spheroidal 
coordinates has been recently discussed by C. A. 
Coulson and A. Joseph, Intern. J. Quant. Chern. 1, 
337 (1967). 

APPENDIX 

The squares of the canonical momenta are 

P~ = W - 1)-1[tEMa2e + AMa~ - s 

and 
- p;(e - 1)-1] (AI) 

P~ = (1 - rl)-1[-tEMa2r/- AMa'Y) + S 

- pi(1 - 'Y)2)-1] 

= ('Y)2 - 1)-1[tEMa2'Y)2 + AMa'Y) - S 

- p;('Y)2 - 1)-1]. (A2) 
if the pair (VI' V2) satisfies the condition 

v1v2(1 - k 2) = -k2(1 + v1)(1 + v2). 
Thus one may uniformly write (for x being either 

(44) ~ or 'Y) 

One may show that (PI' P2), (p~, p~), (p;, p;) satisfy 
the (VI' v2) condition; hence the corresponding III's 
are related. 

One may obtain the energy quantization by labor­
iously adding 11 and 11', using the preceding equations 
together with expressions relating the coefficients of 
the quartic to the roots. A somewhat more trans­
parent technique for accomplishing the same result, 
by use of complex variables, is presented in the 

12 Bateman Manuscript Project, Higher Transcendental Functions, 
A. Erdelyi, Ed. (McGraw-Hill Book Company, Inc., New York, 
1953), Vol. 2, p. 317. 

Pa; = ± [tEM a2x2 + AM ax - S - p;(X2 - 1)-1 ]y-!, 

where, as before, the quartic y is 
(A3) 

y = (x2 - 1)[ +tEMa2x2 + AMax - s 

- p;(x2 _ 1)-1]. (A4) 

13 Similar analytical difficulties are associated with the solutions 
of the separated equations, Eqs. (23) and (24). Even for the free 
particle (A = 0), the solutions involve Lame or spheroidal wave­
functions. [See, for example, W. Magnus and F. Oberhettinger, 
Formulas and Theorems for the Functions of Mathematical Physics 
(Chelsea Publishing Company, New York, 1949), p. 158; C. Flam­
mer, Spheroidal Wave Functions (Stanford University Press, Stanford 
California, 1957).] 
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The appropriate sign in Eq. (A3) must be carefully 
determined to correspond to the variable and the 
integration path used for that variable in computing 
the action. For the variable ~, where the path of 
integration is from14 ()(2 to ()(l' it follows from the 
Lagrangian that 

P; = (Ma 2j4)(e - r/)W - 1)-1t. (A5) 

But (~2 - 'Yj2)(~2 - 1) > 0, and as ~ goes from ()(2 to 
()(l' ~ > O. Hence it follows that p. must be taken as 
positive. Moreover, since pi > 0, Eq. (AI) implies 
that 

[tEMa2~2 + AMa~ - s - p;(e - 1)-1] ~ O. (A6) 

Therefore y ~ 0 (where x = ~), the factor in Po; 
multiplying y-! is ~ 0, and one must choose the 
positive sign for Po; in Eq. (A3) for computing the 
action 

L
a I 

nh = 2 Po; dx. a, (A7) 

For the variable 'Yj, where the path of integration is 
from ()(4 to ()(3' it follows from the Lagrangian that 

p~ = tMa2(e - 'Yj2)(1 - 'Yj2)-lij. (A8) 

Here (~2 - '1')2)(1 - '1')2)-1 > 0, and as 'I') goes from 
()(4 to ()(3' ij > O. Hence it follows that p~ must be 
taken as positive. However, since p~ > 0 (and I'l')l ~ 
1), Eq. (A2) implies that 

[iEMa2'1')2 + AMa'l') - s - pJ(r/ - 1)-1] ~ O. (A9) 

Again, therefore, y ~ 0 (where x = '1'), but the factor 
in Px multiplying y-! is ~ 0, so one must choose the 
negative sign for Po; in Eq. (A3) for computing the 
action 

n'h = 2 Px dx. L
a3 

(AlO) a. 
Now consider the complex extension of y(x), 

namely y(z), where 

y(z) = (-tEMa2)«()(1 - z)(z - ()(2)(Z - ()(3)(Z - ()(4) 

= (Z2 - 1)[tEMa2z2 + AMaz - s 

- pJ(Z2 - 1)-1], (All) 

which is posItive when z is real and ()(2 < z < ()(1' 

For a discussion of [y(z)]+!, let us for convenience 
choose branch cuts for the displayed z factors which 
run from the branch points to infinity along the real 
z( +) direction. Furthermore, let us choose phases so 

14 See £q. (40) and the discussion preceding it for a description of 
the roots IX. 

c, 

". 
-I 

FIG. 1. Contours of integration for action 
integrals and energy quantization. 

that «()(l - z) has zero phase when z is real and less 
than ()(l, and (z - ()(2), (z - ()(3), (z - ()(4) have zero 
phases on the upper banks of their cuts when z is real 
and greater than ()(2' ()(3' and ()(4' respectively.15 
Thus, on the upper bank of the cuts, y(z) has zero 
phase for z real in the region where ()(2 < z < ()(l, 

and y(z) has a phase of 21T for z real in the region 
where ()(4 < z < ()(3. Consequently, for 

p(z) = [tEMa 2z2 + AMaz - s 

- pJ{Z2 - 1)-l][y(ZW!, (AI2) 

the action integrals may be obtained from the contour 
integrals (see Fig. 1) 

r p(z) dz = nh, JeI 
r p(z) dz = n'h. Je, (A 13) 

The fact that nand n' are real implies thatE is negative. 
(Thus -tEMa2 is taken to have zero phase.) Energy 
quantization can be obtained directly by integrating 
over contour C3 (see Fig. 1) which encloses the 
contours CI and C2 , but excludes the poles at z = 1, 
-1, and infinity. Integration may be performed by 
the method of residues by considering the path 
enclosing the rest of the complex plane, the direction 
of integration now being in the clockwise direction.16 

The result is 

(n + n')h = -21T I P", I - 2rrJ.[Mj( -2E)i, (AI4) 

where the first term on the right is the sum of the 
contributions from the poles at z = ± 1 and z = -1, 
and the second term on the right is the contribution 
from the pole at infinity. Consequently, using the fact 
that 21TP", = mh, we obtain the expression for the 
energy E, 

E = -2(1TAjh)2M(n + n' + Iml)-2, (AI5) 

in terms of the quantum number n, n', and m. 

15 In Fig. 1, only the resultant cuts in the z plane for rational 
functions of z and [y(z)]! are shown. 

16 For an example employing this technique, see H. Goldstein, 
Classical Mechanics (Addison-Wesley Publishing Co., Inc., Reading 
Mass., 1950), p. 302. 
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A recently proved theorem of existence and uniqueness for the linearized Boltzmann equation is ex­
tended to two- and three-dimensional domains and general boundary conditions. The proof is valid for 
collision operators having a finite collision frequency, which can arise either from an angular or a radial 
cutoff or by assuming a model equation. Finally, convergence of the solutions of kinetic models to solu­
tions of the actual Boltzmann equation is shown to hold for the boundary-value problems considered in 
this paper. 

1. INTRODUCTION 

In a previous paperl a simple proof of existence and 
uniqueness in the large for the linearized Boltzmann 
equation with finite collision frequency was presented. 
The proof applied to rigid-sphere molecules as well as 
molecules interacting with any hard potential, 
provided that an angular cutoff is introduced in the 
collision term, as suggested by Grad.2 It was, however, 
suggestedl that the proof could be extended to linear­
ized operators with a radial, rather than an angular, 
cutoff. The collision operators with hard cutoff 
potentials have been studied,3 and the above sugges­
tion was found to be essentially true; i.e., we can show 
that the collision operator for cutoff potentials enjoys 
properties which can constitute the basis of a proof 
of the same kind as the one previously given.l The 
space domain was previously! assumed to be a slab, 
and the boundary conditions had a simplified form, 
i.e., the distribution function was supposed to be 
given at each wall for emerging molecules. 

In this paper we want to extend the proof to two­
dimensional and three-dimensional domains of finite 
but arbitrary size and general boundary conditions. 
We also want to discuss the question of convergence 
of the solutions of kinetic models to solutions of the 
actual Boltzmann equation. It will be shown that, for 
the boundary-value problems considered in this 
paper, such convergence applies under the assumption 
of reasonable convergence properties of the model 
collision operator to the actual collision operator. 

2. PROPERTY OF THE FREE-MOLECULAR 
OPERATOR FOR GENERAL BOUNDARY 

CONDITIONS 

In this section we want to show that, for a class (to 
be specified below) of reasonable homogeneous 

• On leave of absence from Applicazioni e Ricerche Scientifiche, 
Milano, and Universitit di Milano, Milano (Italy). 

1 C. Cercignani, J. Math. Phys. 8, 1653 (1967). 
2 H. Grad, in Rarefied Gas Dynamics, J. A. Laurmann, Ed. 

(Academic Press Inc., New York, 1963). 
• C. Cercignani, Phys. Fluids 10, 2097 (1967). 

boundary conditions at the boundary oR ofa bounded 
domain R, the following inequality holds: 

Here ~(~) is any given positive function of the 
molecular speed such that the following integrals 
exist: 

where d is the maximum chord which can be drawn in 
R, y is a numerical constant (depending upon f3 
and R), and f is the linearized distribution function 
related to the full distribution F by 

F = FM (1 + wif). (2.3) 

Here FJJ is the relevant Maxwellian and w is the same 
Maxwellian in nondimensional form 

w = (27T)-! exp [_~2/2]. 

Molecular velocities are measured in (RTo)i units, To 
being the 'temperature of FM and R the gas constant. 
In Eq. (2.1) f is assumed to satisfy the condition 

r fw i I; . ill d; dy = 0, (2.4) 
)<;'0>0 

where, if y E oR, n is the inward normal at y and dy is 
a surface element. Equation (2.4) can be always 
satisfied by introducing a suitable density in FM . 

f is also such that the integral in the right-hand side 
of Eq. (2.1) does exist and is finite. 

Our boundary conditions will be rather general. We 
shall assume that 

f(;; y) = r A(;' --;; y)f(;'; y) d;' == Af, 
J<;,.o<o 

(; • n > 0; y E oR). (2.5) 

The kernel A(;' -- ;; y) must satisfy the following 

633 
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requirement: 

l,.o>o A(; -+ ;'; y)wi (;,) 1;'· nl d;' = I;· nl wiW, 

(VY EaR;;. n < 0), (2.6) 

which expresses the mass conservation at the walls. 
We note that the condition of givenf at the boundary, 
used in the previous paper, 1 does not satisfy this 
requirement, since the homogeneous form of this 
condition isf = 0, i.e., A = O. 

We now place some further restrictions upon the 
kernel. Primarily, we shall assume that, for any 
function a(~) of the molecular function such that the 
integrals (2.2) exist with f3 = a, we have 

L.o>ol;' nilAfl2 a(~) d; ::::;; C(a) 

X 1n<01;' nllfI
2
aWd;, (2.7) 

where C(a) is a constant depending upon a, which is 
not larger than 1 for a(~) = 1. The meaning of Eq. 
(2.7) for a = 1 is that the walls do not destroy 
entropy in absence of forcing terms. For f3 ~ 1, 
Eq. (2.2) has no evident physical interpretation, but 
will be shown to hold for the boundary condition of 
partial diffusion and partial reflection (including 
total diffusion). 

Another property which will be required is con­
nected with the equation 

f=fo + A/, (2.8) 

where the unknown f varies along the boundary and 
with; (; • n > 0), and where 

l(;, y) = f(;, y),. (;. n > 0; YEaR). (2.9) 

Here y is the conjugate point of y to be defined 
presently. For a fixed ; the point conjugate of x 
(where x can be either inside R or on oR) is the 
point ji(x) of the boundary such that x - y has the 
same direction as ;. (If more than one such point is 
present, the nearest one is to be taken.) We shall 
assume that the solution of Eq. (2.8) for a given j~ 
at the boundary is determined up to an additive, 
constant multiple of ([)!(~); therefore we have an 
univocally determined solution f which satisfies 
both Eq. (2.4) and the inequality 

IlfIIB ::::;; k IIfollB' (2.10) 
provided that 

(2.11) 
where 

(f, g)B = L.n>/W I; . nlf(;, y)g(;, y) d; dy, (2.12) 

IIfll1 = (f,J)B' (2.13) 

Later we show that the above requirements are 
indeed reasonable by showing that the boundary 
condition of partial diffusion and partial reflection 
satisfies them. 

We start with the equation 

;. (of I ax) = g(x, ;), (x E R; ; E 3), (2.14) 

where 3 is the usual three-dimensional velocity space 
plus boundary conditions (2.5). Here g is to be 
regarded as a given square-integrable function of x 
and; with respect to the weight f3( ~). g is also required 
to satisfy 

f g(;, x)w! d; dx = 0 (2.15) 

because of the conservation of mass at the walls, 
Eq. (2.6). Equation (2.14) gives 

f(;, x) =! (o g(;, x - S2t) dt 
~ JI.,-iil 

+ f(;, x - S2 Ix - yl), (2.16) 

where ji is the point conjugate of x with respect to 1;, 
and S2 = ;/11;1. In particular, if x = y is a point of 
the boundary (with I; . n < 0), 

f(l;, y) = ~ (o g(l;, y _ S2t) dt + l(l;, y), 
~ Jill-iii 

(;. n < 0). (2.17) 

Now if 1;. n < 0 at y, then; . n > 0 at ji (the two 
normals n and Ii are, of course, differently directed). 
Therefore Eq. (2.17) gives the arriving distribution at 
y in terms of the emerging distribution at y. If we 
substitute this into Eq. (2.5) we get Eq. (2.8), where 

fo = Ago, go = 1. (o g(l;, y - S2t) dt. (2.18) 
~ Jill-iii 

Equation (2.11) is satisfied because one can show 
[by means of Eqs. (2.6), (2.18)] that its left-hand side 
reduces to the left-hand side of Eq. (2.15), which 
holds by assumption. As a consequence, we can 
determine f univocally by requiring that Eq. (2.4) is 
satisfied, and we have, according to Eq. (2.10), 

IIfIIB::::;; k IIfollB::::;; kC(~) IIgoC-;, y)IIB, (2.19) 

where Eqs. (2.6), (2.7), and (2.18) have been used. 
Then, from Eq. (2.16), we have 

f ef3W Ifl2 dl; dx 

::::;;f I (o _ g(l;, x - S2t) dt /2 f3m dl; dx 
Jlx-UI 
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Using the Schwartz inequality, we have 

11 =:;,flX - yl [(0 _lg(l;, x - 51t)12 dt]P(~) dl; dx 
Jlx-VI 

< d f dt[f P(~) Ig(l;, x - 51t)12 dl; dX] 

=:;, d2flg(l;, x)1 2 P(~) dl; dx. (2.21) 

By a change of the integration variables and the use of 
Eq. (2.9), we have 

12 <f 151. ol/f(l;, y)/2 epw dl; dy dt 

=:;, d f /51. ol/f(l;, y)1 2 epw dl; dy 

=:;, kC(P)dfl51. 011 (0 _ g(l;,x - 51t)dtl2 PW dl; dy 
JIY-VI 

=:;, kC(p)d2fl51. ollg(l;, xW P(~) dl; dy dt 

= kC(p)d2f Ig(l;, X)/2 P(~) dl; dx. (2.22) 

By using Eqs. (2.20), (2.21), and (2.22), we conclude 
that 

f ~21f12dl;dx =:;, [1 + kC(P)]d2flgI2dl;dX, (2.23) 

which is immediately seen to be Eq. (2.1) with y = 
[I + kC(P)]-I, if Eq. (2.14) is recalled. 

Now we want to verify that the assumptions 
considered above are satisfied by the Maxwell bound­
ary conditions of partly diffuse and partly specularly­
reflected molecules. In this case we have 

A(I;' ~ 1;) = (I - oc)b[1; - 1;' - 20(0.1;')] 

+ oc II;' • 01 [21TW(~)W(n]!, 

(I;' ·0 < 0, 1;.0 > 0, and 0 < oc =:;, I). (2.24) 

First of all, by obvious manipulations and the 
Schwartz inequality, we have 

( I; . 01/Af12 O'(~) dl; J; ·n>O 

=:;, (1 - OC)2fll;. 01/f12 O'(~) d; 

+ 21TOC
2[i. n>O /1;. 0/ w(~)O'(~) dl;] 

x [1 11;·01 w(~) dl;] 
;. 0<0 O'(~) 

X [L.o<oll;.OIIf(~WO'WdI;J (2.25) 

Equation (2.7) then follows, with 

C(O') = (1 - OC)2 + 21TOC2[ r II; • 0/ w(~)O'(~) dl;] 
J;.o>o 

x [1 II; • 0/ w(~) dl;]. (2.26) 
Ii' 0<0 O'(~) 

In particular, if 0'(;) = 1, then 

C(I) = (I - OC)2 + oc2 =:;, l. (2.27) 

Now we consider Eq. (2.8). We have 

f(l;, y) = fo(l;, y) + (1 - oc)f(1; - 20(0.1;), y) 

+ OC(21TW)!L'.0<011;'. 01 [w']!f(I;', y) dl;'. 

(2.28) 
Now we split both/andfo as follows: 

/ = ,u(y)[21TW( m! + g(l;, y), 

/0 = ,uo(y) [21TW( ~)]! + go(l;, y), (2.29) 

where g(l;, y) [respectively, go(l;, y)] satisfies 

1 g(l;, y) 11;·0/ [wW]! d; = 0 (VY E oR). 
;'0>0 

(2.30) 
The splitting is always possible if we take 

,u(y) = f f(l;, y) /1; • 01 [w(~)]! dl; (2.31) 

= ,uo(Y) + 1 ( 151'·0/ ,u(y) d51' 
1T In'.o<o 

+ fr.o<oll;'. 0/ [w(~')]!g(;', y) dl;', (2.32) 

g(l;, y) = go(l;, y) 

+ (1 - oc)g(; - 20(1; • 0), y). (2.33) 

Now Eq. (2.33) can be solved by iteration and easily 
gives 

1 
IigliB =:;, -ligoIIB , (0 < oc < 1). (2.34) 

oc 

Therefore g can be regarded as known in Eq. (2.25), 
which can be written 

,u(y) = vo(Y) 

+ 1 ( I(y - y'). oll(y' - y). 0'/ ,u(y') dy', 
1T JiJR(y) /y _ y'I 4 

where 
(2.35) 

vo(Y) = ,uo(y) +1 1;' • o[w(e)]! g(I;', y) dl;'. 
;"0<0 

(2.36) 

We have written y' in place of yin Eq. (2.35) and used 
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the fact that y - y' = Qly - y'l, 

dQ = cos (y' - y, 0') dy', 

and n' is the normal at y/. oR(y) is the part of oR 
which is seen from y/. Therefore it coincides with the 
whole boundary oR for a simply connected region 
whose boundary has a fixed convexity. 

Now we note that the integral equation (2.35) has a 
symmetric square-integrable kernel for any domain 
with bounded curvature. This is easily seen, provided 
that we take into account that both y' and y lie on the 
boundary oR. Therefore, when y' -+ y, the singularity 
is much milder than it appears at first glance. 

We observe now that fl = const is the only solution 
of Eq. (2.35) for Vo = O. Therefore a necessary and 
sufficient condition in order to have a solution 
(determined up to an additive constant) is that 
J vo(y) dy = O. Now we have 

r vo(Y) dy = r flo(Y) dy 
JOR JOR 

+ r r ~/. n[w(nJig(~/, y) d~' dy. 
JOR J'ii' ·n<O 

(2.37) 

The second integral can be transformed as follows: 

r ~' . n[w(n]ig(;" y') d;' dy' = 0, (2.38) 
J~ .. n <0 

where y' = y (accordingly 1;'· 0'1 dy' = I~' . 01 dy) 
and Eq. (2.30) have been taken into account. Therefore 

r vo(Y) dy = r flo(Y) dy 
JoR JOR 

= J foe;, Y) I~ . 01 [w(~)Jt d~ dy = ° 
(2.39) 

if Eq. (2.11) is assumed to be satisfied. 
We have, therefore, proved all the properties which 

we previously required. We note that, although we 
have used a three-dimensional language throughout, 
all the considerations apply to the two-dimensional 
case with little modification. (In the one-dimensional 
case the treatment is rather trivial.) In particular, 
p(;) can now be a function of both the molecular 
speed and the absolute value ;i of the projection of the 
molecular velocity onto a plane orthogonal to the 
symmetry axis. 

3. BASIC EQUATIONS AND OPERATORS 

Consider the problem in a bounded region for the 
separated time equation: 

sf + ; . (of/ox) + Lf = 0, (Re s ;:::: 0, (3.l) 

wherefis the perturbation ofa basic Maxwellian, FM 
as specified by Eq. (2.3). We assume that the emerging 
distribution at the boundary is the sum of a given 
function plus a term related to the incoming distri­
bution by Eg. (2.5), where A satisfies the restrictions 
which have been pointed out in the previous section. 

We shall restrict the problem to suitable collision 
operators L by requiring that they can be split into 
two parts as follows: 

Lf= -Kf + v(~)f, (3.2) 

where v(;) is a multiplication operator and K is a 
self-adjoint operator such that fl-iKfl-i is a completely 
continuous operator in the Hilbert space Je of square­
summable functions. Here fl = fl(~) is a suitable 
function4 of ~ such that v(~) $ fl(~); it can be taken 
equal to a multiple of v(~) for collision operators with 
angular cutoff or equal to a multiple of some power 
of v(~) for collision operators with radial cutoff.1•3 It 
can also be shown3 that, for three-dimensional prob­
lems, the first power of v(~) is sufficient for the validity 
of the present treatment, even for the case of a radial 
cutoff-although in this case nothing is known about 
the complete continuity of v-tJ(,v-~. (We shall com­
ment upon this in more detail later.) 

One can always choose fl(~) (multiplying it by a 
constant larger than 1 if necessary) in such a way that 
one is able to split Lf as follows: 

Lf= -Hf + flf, 
and H is such that 

o $ (j, Hf) $ (flf,!). 

(3.3) 

(3.4) 

Here parentheses denote, as usual, inner product 
in the Hilbert space of square-summable functions 
of ~. 

We shall also assume that ~/fl(~) is bounded. This 
is necessarily true for radial cutoff and can be made 
true by suitably changing fla) for angular cutoffs. 

As a consequence of the splitting in Eg. (3.3), one 
can rewrite Eq. (2.1) as an "integral" equation: 

f=fo + UHf, (3.5) 
where 

[ 
flW + s - J-fo = exp - ~ (x - y). Q f (3.6) 

i is the inhomogeneous part of the boundary con­
ditions, and U is the inverse of the operator 

1; • (a/ox) + [fla) + s] (3.7) 

plus the homogeneous boundary conditions (2.5) 

• Please note that the !l's and v's used in this section (and in the 
following) have nothing to do with those used in Sec. 2. 
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and (2.4) together with all the specifications given in 
Sec. 2. For a steady problem we have merely to set 
s = o. 

Now we want to show the following lemma. 

Lemma I: A nonzero numerical constant 'Y) (de­
pending upon the shape of the boundary) can be 
found such that, if 

p(l;) = ([,u(~) + Re S]2 + 'Y)2(~;/d2)}! (3.8) 

(~i having been defined at the end, d at the beginning 
of Sec. 2), then 

«pUg, Ug» ~ «p-lg, g», (3.9) 

where the double parentheses denote the scalar product 
in the Hilbert space of square-integrable functions of 
both x and 1;. In order to show that this equality 
holds, we note that if we put 

Ug =h, 

then Eq. (3.9) becomes 

«ph, h» ~ ( (p-l{ ~ . ~~ + [,u(;) + S]h}, 

(3.10) 

{I;. ~~ + [,u(~) + S]h})) = rhs, (3.11) 

where h satisfies the boundary conditions (2.5). The 
right-hand side of Eq. (3.11) can now be written as 
follows: 

rhs = f p-l 1 I; . ~~ 12 dl; dx 

+ 2fp- 1[,u(;} + Re s]hl;. oh dl; dx ox 
+ f l,u(;} + Sl2 p-1 1h1 2 dl; dx. (3.12) 

Now 

=fhl; • oh dl; dx ox 
+f{p-l[,u(~) + Re s] - l}hl;. oh dl; dx. ax 

The last term is smaller in absolute value than 

(3.13) 

~ «ep-1h, h»! ( (p-ll; . :~ , I; . :~) ), (3.14) 

where 'Y) is the constant which appears in p and has to 
be suitably determined. 

Therefore, if we apply the Gauss lemma to the 

first term in the right-hand side of Eq. (3.13) and use 
Eq. (2.7) with C(1) = 1, we obtain 

rhs ~ [( (p-ll;. :~, 1;. :~) )t - 'Y)d-l«~2p-lh, h»t] 

x ((p-ll;. oh , 1;. Oh))! + «p-l(,u + Re s)2h, h». 
ax ax (3.15) 

Now consider a closed neighborhood 0 ~ 'Y) ~ 'Y)o, 

where 'Y)o is some arbitrarily fixed number. Then, for 
any 'Y) in this neighborhood, the corresponding p 
satisfies Eq. (2.1) with (3 = p-l and some y = Y('Y) > 
O. Since y depends continuously on 'Y), it will reach a 
minimum value Yo which is also positive. We take for 
'Y) the smallest of the two numbers Yo/2 and 'Y)o. Then 
we can apply Eq. (2.1) twice and obtain 

rhs ~ Yo(2d)-1«~2p-lh, h» + «p-l(,u + Re s)2h, h», 

= «[(,u + Res)2 + Yo(2d)-1~2]p-Ih, h» 

~ (p, h, h), (3.16) 
as was to be shown. 

4. EXISTENCE AND UNIQUENESS IN THE 
LARGE 

Now we present a proof of the following theorem. 

Theorem I: The integral equation form of the 
Boltzmann equation, Eq. (2.6), has one and only one 
solution f such that, for any given j such that PYo 
is square-integrable and ptf is also square-integrable, 
p being defined by Eq. (3.8). This solution f can, in 
principle, be obtained by a convergent iteration 
procedure. 

The \lbove theorem is an immediately obvious 
consequence of the contraction-mapping theorem 
and the following lemma. 

Lemma II: The operator UH is a contraction 
operator when acting upon functions belonging to the 
Hilbert space J(, of the functions, which are square­
integrable with respect to the weight p. 

To prove this lemma, we use Lemma I to obtain 

«pUHf, UHf» ::; «p-IHf, Hf» = «Jg, Jg», (4.1) 

where 
(4.2) 

Now J is a self-adjoint operator in :Ie and has a norm 
smaller than 1. This can be easily shown in the case 
where ,u-!Klr~ is completely continuous (by the same 
argument as used in Ref. 1). However, in the case of a 
three-dimensional domain, we can avoid2 using this 
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property of complete continuity, provided that ft(~) 
grows as ~ when ~ - 00. This allows us to choose 
ft(~) equal to a multiple of v(~) for any collision 
operator with a radial cutoff, as was anticipated in 
Sec. 3. In any case, under our assumptions we have 

«pUH/, UHf»~ ~ (X«g, g» 

= (X«p/J», «(X < 1). (4.3) 

5. CONVERGENCE OF THE SOLUTIONS 
OF KINETIC MODELS 

The above existence and uniqueness theorem shows 
that a solution does exist for any Knudsen number. 
The theorem is also constructive in nature, since one 
can, in principle, write down the solution in the form 
of a series. However, the complicated character 
of the operators U and H makes this procedure 
hopeless from a practical standpoint. From this 
point of view one has to rely upon the use of model 
equations which approximate the collision operator L 
by a simpler operator Lx, such that the equations 
can be handled by analytical or numerical procedures 
in a satisfactory way. 

From the point of view of establishing a sound 
connection between the present theory and the 
practical procedure based on kinetic models, it is 
important to show that, if Lx - L (N - 00) in some 
sense, then, in some related sense, the solution .f.v 
of the model equations converges to the solutionf of 
the actual Boltzmann equation. This is proved by the 
following theorem. 

Theorem II: Let L be a collision operator which 
can be split as in Eq. (3.3), let Lx be a sequence of 
operators which can be similarly split (with the same 
ft as for L), and let 

IIp-~(Lx - L)p-ill - 0 as N - 00, (5.1) 

p being given by Eq. (3.8) with appropriate ft(~) 

and 'fl. 
Then the solution Iv of the integral version of the 

model equation corresponding to Lx tends (in the 
J{, norm) to the solution / of the analogous equation 
corresponding to L with the same boundary condi­
tions. [The norms appearing in Eqs. (5. I) are in the 
:Ie space.] 

In order to prove the theorem, we consider the 
integral version of both the model and the actual 
equation: 

Iv =/0 + UHN!x, 

f=/o + UHf 

(5.2) 

(5.3) 

We note that/o and U are the same in both equations, 

and both / and Iv exist and are uniquely determined 
because of the existence and uniqueness theorem 
proved in Sec. 4. 

Now if we put 

f=hv + rN' (5.4) 
we have 

(5.5) 

Because of Eq. (4.3) applied to HN we have 

«pUH.vrx, UHNrx» ~ (XN«prX' rs», «(Xx < 1). 

(5.6) 
Now because of Eq. (5.1), which implies 

IIp-!(Hs - H)p-ill_ 0, (N - 00), (5.7) 

we can choose (Xx in a way such that (Xx - (X as 
N -+ 00, where (X < 1 is the constant in Eq. (4.3). 
Since N = 00 is the only accumulation point of the 
sequence of the integers, it is now obvious that an 
(xo < 1 exists such that (Xx ~ (xo for any N. Accordingly, 

«pUHxrx, UHsrx» ~ (XO«prN, Px», 

«(Xo < 1), (5.8) 

and one can apply the contraction-mapping theorem 
to Eg. (5.5) and deduce the following: 

«prN' rx» ~ [1/(1 - (Xo)]«pU(H - Hx )!, 

where 

U(H - H x )!», 
~ [1/(1 - (Xo)]«p-l(H - H.,;)j, 

(H - H.v)!» , 
~ [Ex/(l - (Xo)]«pfJ», (5.9) 

Since ES-O as N-->-oo because of Eq. (5.1), it 
follows that r.v -+ 0 in the J\, norm, as was to be 
shown. 

6. CONCLUDING REMARKS 

It is felt that the present paper makes a significant 
contribution to the rigorous foundation of the 
mathematical theory of the linearized Boltzmann 
equation. In particular, the theorem concerning the 
convergence of the solutions of kinetic models should 
provide a rational basis for the use of such model 
equations which have proved very useful in the past 
few years in attacking the transition regime of rare­
faction in a systematic way. What is needed now are 
estimates of the velocity of convergence, which, 
however, have to be found through methods essen­
tially different from those employed in the present 
paper. 

Another limitation of the present paper is that only 
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bounded domains have been considered. It is felt 
that this is not merely a limitation specific to the 
present paper, but concerns the possibility of treating 
general problems in unbounded domains with the 
present kind of approach. This circumstance, in turn, 
could reflect the difficulty of an uniformly valid 
linearization in unbounded domains. This matter is, 

JOURNAL OF MATHEMATICAL PHYSICS 

of course, very important for applications of the 
Boltzmann equation to aerodynamics problems and, 
therefore, will be investigated in a future paper. 
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I. INTRODUCTION 

In this paper the group K n , generated by all 
products of unitary diagonal n X n matrices a with 
n X n permutation matrices p, is considered. It is 
shown that all elements of Kn are of the form a' p 
and, moreover, that Kn is the semidirect product 
of its invariant Abelian subgroup An and its subgroup 

Sn· 
No systematic account of the group Kn seems to 

have been published. There exist finite groups anal­
ogous to Kn in which all elements a have finite order 
k. Unimodular groups similar to Ka and its finite 
counterparts have been studied recently by Fairbairn, 
Fulton, and Klink.l For general n and all elements 
a :F e of order k = 2, a group with real elements 
results. This group is known as the hyperoctahedral 
group.2 It may be regarded as the symmetry group 
of the n-dimensional Cartesian frame,2 since its 
elements transform one system of Cartesian unit 
vectors 

e(S):e~S) = t5s•t(±I), s, t = 1,2,'" n 

into another. In complete analogy, the group Kn may 

• Forschungsstipendiat der NATO. Present address: Institut fUr 
Theoretische Physik, Tiibingen Universitiit, Deutschland. 

, W. M. Fairbairn, T. Fulton, and W. H. Klink, J. Math. Phys. 
5, 1038 (1964). 

2 H. S. M. Coxeter and W. O. Moser, Generators and Relationsfor 
Discrete Groups (Springer-Verlag, Berlin, 1965), p. 90. 

be regarded as the symmetry group of the unitary 
frame since its elements transform one system of 
unitary unit vectors 

u(s):u;s) = t5s•t exp [i68
], s, t = 1,2, ... , n 

into another. 
In Sec. II some properties of Kn-like classes and 

parametrization are discussed first. The construction 
of irreducible representations (IR) of semidirect­
product groups has been discussed by McIntosh3 

and by Altmann4 based on work of Mackey.s The 
present discussion follows the derivation given by 
McIntosh. The chain Kn => Kn- l => ••• => Kl is 
shown to be canonical. 

In Sec. III the reduction of IR of Kn in the chain 
Kn => Sn is considered. This requires the reduction 
of representations of Sn induced by subgroups of the 
form Sn, (B 'Sn

2 
(B ••• (B Sn;. By reciprocity theorems 

this reduction is related to the simpler problem 
Sn => Sn, (B Sn

2 
(B ••• (B Sn;, which is therefore con­

sidered first. The latter chain has recently been 
studied by Kaplan6 and Horie. 7 

3 H. V. McIntosh. J. Mol. Spectry. 5, 269 (1960); 10, 51 (1963). 
• S. L. Altmann, Phil. Trans. Roy. Soc. (London) 255,216 (1963). 
5 G. W. Mackey; Proc. Natl. Acad. Sci. US 35, 537 (1949); 

Ann. Math. 55,101 (1952). 
6 I. G. Kaplan, Zh. Eksp. Teor. Fiz. 41,560 and 790 (1961) [Soviet 

Phys.-JETP 14, 401 and 568 (1962)]. 
7 H. Horie, J. Phys. Soc. Japan 19, 1783 (1964). 
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3 H. V. McIntosh. J. Mol. Spectry. 5, 269 (1960); 10, 51 (1963). 
• S. L. Altmann, Phil. Trans. Roy. Soc. (London) 255,216 (1963). 
5 G. W. Mackey; Proc. Natl. Acad. Sci. US 35, 537 (1949); 

Ann. Math. 55,101 (1952). 
6 I. G. Kaplan, Zh. Eksp. Teor. Fiz. 41,560 and 790 (1961) [Soviet 

Phys.-JETP 14, 401 and 568 (1962)]. 
7 H. Horie, J. Phys. Soc. Japan 19, 1783 (1964). 
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In Sec. IV the group Kn is studied as a subgroup of 
the unitary group Un in n dimensions. In particular, 
it is shown that the bases of irreducible representations 
(BIR) of Sn constructed by Moshinsky8 from special 
bases of Un result in a natural way as BIR of Kn. A 
physical application of the group Kn results from the 
group theory of n particles in a common harmonic­
oscillator potential as discussed by Bargmann and 
Moshinsky9 and by Kretzschmar.10 The symmetry 
group of the corresponding Hamiltonian is the unitary 
group U3n in 3n dimensions. A subgroup 913 X Un of 
U3n can be introduced, where 'l1a and Un are unitary­
matrix groups affecting the 3 vector components and 
the n particle indices, respectively. It is shown in 
Sec. IV of this paper that, from the use of the chain 
Un ::l Kn the concept of a multishell configuration 
results. Therefore the group Kn appears as the sym­
metry group of the harmonic-oscillator shell model, 
and the BIR of the groups in the chain Un ::l Kn ::l Sn 
are n-particle shell-model states with permutational 
symmetry. The possible IR of Sn for a fixed IR of 913 
can be found by using the characters of Kn. This 
offers a new way of extending the results of ElIiottlI 

and Kretzschmar10 to arbitrary multishell configura­
tions. Use of the group Kn leads to a factorization 
of the harmonic-oscillator fractional-parentage co­
efficients for these configurations. 

II. GROUP Kn = An: Sn 

A. General Properties-Class Structure 

with a" = apa'p-l E An and p" = pp' E Sn. The 
inverse of ap is given by (p-ltrlp)p-r, since 

(p-ltr1p)r1ap = ap(p-ltr1p)r1 = e. 

Theorem //.1: The set of elements {ap} with a E An 
and p E Sn form a group Kn. Kn is the semidirect 
product of An and Sn, i.e., Kn = An: Sn . 

The second statement follows since3: 
(a) all elements of Kn are of the form ap, a E An' 

p E Sn; 
(b) An is an invariant subgroup of K n , i.e., for 

a E An and a'p' E Kn 

(a'p')a(a'p')-1 = a'(p'ap'-I)a'-1 E An; 

(c) the intersection of An and Sn contains only 
the identity element e. 

The group Kn has n continuous parameters 
C/.!, s = 1, 2, ... ,n, and also has discrete elements; 
it is a mixed continuous group.12 

What is the class structure of Kn? Transforming 
the elements ap with an element bEAn, 

bst = ~s, t exp [itlS], 
one finds that 

with 

(bapb-1p-1)st = (js,t exp [i(ctS + tl8 - tl1>(s»]. 

Therefore, new elements of the class of ap are obtained 
by changing ct· into 

Define the group An as the group of unitary 'ctS = ctS + yS, yS = f38 - tlp(S). (4) 
diagonal n x n matrices, An = {a}, where the 
matrix a has elements These transformations are restricted by 

ast = ~s,t exp (jctS], s, t = 1,2,' .. ,n, O'S rxS S 211'. 

(1) 

Similarly, represent the group Sn by n x n permuta­
tion matrices p. If the permutation p sends letter s 
into letter pes), define the matrix p by specifying its 
elements 

PSi = ~P(S),i' (2) 

Next consider product matrices ap with a E An 
and p E Sn. Since pap-l has elements 

(parl)Si = ~s,t exp [ict,,(s)j. (3) 

it belongs to An. Then for a, a' E An, p,p' E Sn' 

apa'p' = (apa'r1)(pp') = a''p'', 

8 M. Moshinsky, J. Math. Phys. 7, 691 (1966). 
• V. Bargmann and M. Moshinsky, Nucl. Phys. 18,697 (1960); 

23, 177 (1961). 
10 M. Kretzschmar, Z. Phys. 157,433 (1960); 158,284 (1960). 
11 J. P. Elliott, Proc. Roy. Soc. (London) A245, 128, and 562 

(1958). 

n n n n 

I' ctS = I (rxS + yS) = I rxS + I (f3S - tlP(s» 
s~1 s~1 s~1 s~l 

n 

= I ctS. 
,'1=1 

(4') 

As a consequence, there are m - 1 in-class parameters 
as defined by Murnaghan13 for each disjoint m cycle 
of the permutation p. Transforming now ap by an 
element q E Sn, 

one has 
qapq-l = qaq-lqpq-1, 

(qaq-l)q_'(S),i = (lq-'(s),t exp [ictS], 

(qpq-1)q_'(s),t = (lq-'(p(S»,t. (5) 

Therefore, if P sends s into pes), then qpq-l sends 
q-1(S) into q-1(p(S» while the multiplying factors 

12 E. P. Wigner, Group Theory and its Application to the Quantum 
Theory of Atomic Spectra (Academic Press Inc., New York, 1959), 
p.89. 

13 F. D. Murnaghan, The Unitary and Rotation Groups (Spartan 
Books, Washington, 1962), p. 19. 
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exp [i,x"] are unchanged. } he new class elements 
obtained in this way have the same cycle structure as p 
but with numbers s replaced by q-l(S) in all cycles, 
whereas the factors exp [i,xS] "remain fixed" to the 
same cycle. From the in-class structure of Kn , one 
concludes the following: 

Theorem II.2: A class of Kn is determined by a defi­
nite cycle structure and by the values of nc class 
parameters, each belonging to one of the nc cycles. 
An element of Kn within this class is determined by a 
permutation p with the corresponding cycle structure 
and by the values of n-nc in-class parameters. 

Finally, the eigenvalues of the matrices ap are of 
interest for later applications. Since the matrix ap is a 
direct-sum matrix of submatrices belonging to the 
disjoint cycles of p up to a similarity transformation, 
it suffices to consider a cyclic m x m matrix aq where 
q is of order m so that qm = e. Then 

(aq)m = a(qaq-l)(q2aq-2) ... (qm-1aql-m)qm 

is diagonal with elements 

(aq);'; 
= b

s
•
t 
exp [i(,xs + ,xQ(s) + ,xQ2(S) + ... + ,xQm-l(S)] 

= bs.texp [i~l,xJ 
It follows that the eigenvalues E of aq fulfill 

Em = exp [i~I,xl 
The solutions of this equation can be written as 

E t = exp [i ~>sJ . rtm , t = 1,2, ... ,m, (6) 
m s~I 

where the rtm are the mth roots of unity. For each 
cycle of p, one obtains a set of eigenvalues of the type 
of Eq. (6). 

B. Irreducible Representations of the Group Kn 

The present construction of irreducible representa­
tions of the group Kn follows the discussion of irre­
ducible representations of semidirect product groups 
given by McIntosh. 3 

First of all, the irreducible representations (IR) of 
the invariant subgroup An or Kn are determined. An 
is the direct sum of n Abelian groups C GO' and so its 
IR are the direct-product representations of the n 
groups Coo. Since a group Coo has the IR 

exp [iw,x], w integer, 

an IR of An may be characterized by the weight 

w = (wI, w2
,"', w")as 

(wi a Iw) = exp [i s~Iws,xl (7) 

For any weight wand a permutation p E Sn, one can 
form the new representation 

p-l[(wl a Iw)] = (wi parI Iw) 

characterized by the permuted weight 

The set of representations of An obtained from (wi a Iw) 
by applying all p E Sn is called the star of the rep­
resentation. One then defines a subgroup W of Sn 
which comprises all h E Sn which transform the IR 
(wi a Iw) of An into itself, i.e., 

W = {h}:h-I[(wl a Iw)] = (wi a Iw). (8) 

This group W is often called the little group. It may 
also be called the group of the weight in analogy to 
the concept of the group of the wave vector used in 
the theory of space groups. 

Choosing an IR fw of the group W, a product 
representation 

(11'1 a Iw)(fwl h Ifw) 

can be formed. This is in fact a representation of the 
semidirect product group An: W with elements ah; 
since, on defining 

(9) 

one finds for a, a' E An, h, h' E W: 

(wfwl aha'h' IlIfw) 

= (lIfwl (aha'h-1)hh' IWfw) 

= (wi a Iw)(wl ha'h-1 IW)(fwl h Ifw)(fwl h' Ifw) 

= (wi a Iw)(fwl h Ifw)(wl a' IW)(fwl h' Ifw) 

= (wfwl ah IlIfw)(l1fwl a'h' Il1fw). (10) 

This representation can be shown to be irreducible.3 

For the group K n , the group of the weight W can 
easily be determined. On grouping equal weight 
components together, one may write 

w = (WI' WI"'" WI' W 2 , W 2 ,"', w2,"', 

~~ 

Wi' Wi"'" Wi) 
~ 

nj 

(11) 

This standard weight is clearly left unchanged by all 
elements of the direct-sum subgroup 

W=S (£)S (£)···(£)S n 1 n 2 "j 

of Sn' whereas all elements of Sn not contained in this 
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subgroup change the weight. The IR of Ware direct 
product representations and may be denoted by 

Iw =JI/2 ••• p, (12) 

where I! = [IJ2' .. In.]! denotes the partition char­
acterizing the IR of the group Sn,. Similarly, the 
rows of the IR of the group W may be denoted by 

where rl = (r1r2 ' •• r n)1 is the Yamanouchi14 symbol 
characterizing the rows of the IR of Sn, in the order 
used by Horie. 7 

From the particular IR of the subgroup An: W of 
Kn given in Eq. (9), one may induce representations 
of Kn. To do this, choose k right-coset generators 
Cm ,m = 1, 2, ... , k of Win Sn. For W = Sn

1 
(f) Sn., 

a standard choice given by Horie7 is the set 

Cl = e, 

Cq+l = (SI' (1)(S2, (2) ••• (Sq, (q), 

1 ::::;; q ::::;; min (nl' n2), (13) 

1 ::::;; SI < S2 < ... < Sq ::::;; n1 , 

n1 + 1 ::::;; (1 < (2 < . . . < (q ::::;; n1 + n2' 

For W = S n (f) Sn (f)'" (f) Sn., first take the Goset 1. , 
generators of Sn (f) Sn in Sn +n , then the coset 

1 2 1 2 

generators of Sn +n (f) Sn in Sn +n +n' etc., and 
1 2 3 1 2 3 

multiply all members of the first set by all members of 
the second set from the right, etc., to obtain in this 
way a number 

k=(n1+n2)!(nl+n2+na)!... n! 
nl ! n2! (nl + n2)! na! (n - ni)! nil 

n! 

n1 ! n2 ! ... nil 
(14) 

of distinct right coset generators of W in Sn. 
Then form the induced representation of Kn given by 

(wfw' wlnl ap IWfwr wm) 

= (wfw'wl cmapc;;.llwfwrw)t5(c,nPc;;'\ hEW) 

= (wi c,nac,iillw)(fwi'wl c,,,pc;;.llfwr w) 

x t5(c,,,pc-;;.\ hEW). (15) 

The t5 appearing in this expression is one, if C'iiPC:;;/ 
equals some element h of the group of the weight W 
and zero otherwise. McIntosha gives the proof of 
the irreducibility of the representations of a semi­
direct-product group induced in this way and shows 
that all irreducible representations are obtained by 
this method. A proof for the irreducibility of these 
representations for the case of Kn can also be given 

.. T. Yamanouchi, Proc. Phys. Soc. Japan 19,436 (1937). 

by using the characters of the induced representations 
to be derived in the next section. Therefore one has 
the following theorem. 

Theorem II.3: The irreducible representations of the 
group Kn are given explicitly by the induced represen­
tations 

X I(W~lW;' ... w~i)fy2 ... Fr1r2 ... rim) 

= «W~lW;' ... w~i)1 c,.,ac;;r? I(W~lW;' ... w7i» 
x (flil l hI Iflr1) X (Pi21 h21Pr2) X ... 

X (Fiil hi IFri) 

X t5(c",pc-;;'\ hI (f) h2 CB .•. EB h j 

E S"l EB SU2 EB' •. CBS,,). (15') 

These IR are characterized by the standard weIght 
W = (Wrl) and by the IR f1f2 . .. fi of the group 
of the weight W. 

If the bases of the irreducible representation (BIR) 
(w,lw) of An: Ware denoted by 

IWfwr w), 

the BIR of the IR (w'/w) of K" are given by 

IWfwrwm) = e-;;.1 Iwfwrw)' 

Note that, for In =F m, 

(wfw'w fn I wfwrwm) = (wfw'wl e,,,e-;;.llwfwrw) == O. (16) 

For if c,,"e:;;,! E W, then cm = hCm for some hEW, 
so that the cosets Wc,lt and WCm coincide. Therefore 
c,./:;;/ 1= W, so it changes the weight. In this case 
the states 1»1w'w) and c,,,c:;;/Iwlwrw) have different 
weight so that their scalar product is zero. 

C. Projection Operators and Characters of the 
Group Kn 

Using the IR of K" obtained in the last section, it is 
possible to write down the Wigner projection oper­
ators15 needed for the determination of BIR of Kn. 
These projection operators involve sums over all 
group elements; for the mixed continuous group K" 
this implies an n-fold integral over the continuous 
parameters IX!, IX2, ... , IX" and a sum over all permu­
tations P E Sn . 

Denote by IGI the order of a group G, and by IKI 
the dimension of the irreducible representation K of 
G. The order of the mixed continuous groups Kn can 
be measured by 

(17) 

,. Reference 12, p. 87. 
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The Wigner projection operator for the IR (w,!,v) of 
K" is given by 

w,'''' - w -- da-1 f 1 cr.,m,rwm - I ,jwl (27T)" n! 

x I (wfwrwml ap Iwfwrwm)* ap 
P<Sn 

X (f2r21 h2 If2r2)* ... (fjril h j Ifjrj)* 

x C;,t(hl EEl h2 EEl ••• EEl hj)cm • (18) 

The sum over p E Sn reduces to a sum over hEW 
because of the o's in the induced representations; to 
each p E Sn there corresponds at most one hEW 
because of the uniqueness of the coset representative 
hCm of c''iip. This leads to the factorization of the Wig­
ner projection operator (18) as discussed in general 
by McIntosh.3 

Next consider the characters of the representations 
(15) of Kn obtained by taking the trace. One finds 

k 

X(w,!w)(ap) = I (wi cm ac;.1 Iw)X'w(h) 
m=1 

or, more explicitly, 

. k 

X(w,t',· . .. ")(ap) = I (wi cmac;.1 Iw) 
m=1 

X X,I(h 1)x"(h2)' •• X,i(hj)o(cmpc;,\ hI EEl h2 

EEl ••• EEl h j E SnI EEl S". EEl SnJ (19') 

In this and the following section, frequent use will 
be made of the following theorem. 

Theorem II.4: The character of a representation of a 
group G induced by the irreducible representation K 

of a subgroup H of G is independent of the choice of 
coset generators of H in G. Characters of representa­
tions of G induced by the same irreducible representa­
tion K of conjugate subgroups H, H', ... of G are 
equal. 

Proof' The proof of the first part of this theorem is 
given by Burrow.16 The second part can be proved by 

,. M. Burrow, Representation Theory of Finite Groups (Academic 
Press Inc:, New York, 1965), pp. 77-80. 

showing that the corresponding induced representa­
tions are related by a similarity transformation. 

Using this theorem, one can now test the irreduci­
bility of the representations (15) of K" by calculating 

1 da I x(W,Jw)(ap)x(W,'w)*(ap). (20a) 
aEAn 1JESn 

The integral over the group An, i.e., over the angles 
cx.1 , cx.2 , ••• , cx.n , gives zero unless w is obtained from w 

by a permutation q E S". In the latter case, the 
groups Wand W of the weights wand ware conjugate 
as also are the groups A,,: W'and An: W from which 
the representations of K" were induced. Then it 
follows from the theorem that 

Without loss of generality, one may assume that W = 
Wand that the coset generators are identical in both 
cases. Then 

X exp f i i (WCrn-'(s) _ wcm-'(S)cx.s} 

\ s=1 

X I {xJw(cmpc;nl)o(c,iipCfij\ hEW) 
1JESn 

X X'w(c mpc;.l)o(cmpc;.\ hEW)} ] 

= o(w, W)(27T)" n! I xfw(h)x'w*(h) 
n1 ! n2 ! ... n j ! hEW 

(20b) 

Here o(w, w) equals one if w is obtained from w by a 
permutation; it equals zero otherwise. The integration 
over cx.1, cx.2 , ••• cx." gives in = m, and then the sum 
over p E Sn. can be changed to a sum over hEW. 
The result is the one expected for irreducible repre­
sentations, (27T)nn! being the order of Kn Y 

For later applications, the expressions for the 
characters of Kn in two special cases are needed. 

(a) If all components of the weight ware different 
from each other, the group of this weight (WI) is 
SI EEl SI EEl ••• EEl SI' The coset generators are all 
q E Sn, so that the character of the IR «WI)' [1]") 

17 Reference 12, p. 87. 
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of Kn becomes 

X(w1 ' W,,' . " W .. [ltl(ap) 

= L (WI' W2, .. ·, Wn \ qaq-I\WI' W2"'" Wn) c5(p, e). 
qESn 

(21) 

(b) If all components of the weight ware equal, i.e., 
w = (w"), the group of this weight is Sn and the 
characters of the IR (wn, f) of Kn are given by 

X(Wn,fl(ap) = exp [iW s~ IXs] . x'(p), (22) 

with I = [fd2' .. In] denoting an IR of Sn· 

D. Chains of Groups Kn ::> n_KI ffi K1 and 
Kn ::> Knl ffi Kn, 

By restricting the elements ap of Kn to direct-sum 
matrices a'p' ffi a" containing the (n - 1) x (n - 1) 
matrices a'p' of K n_ 1 and the element a" of KI along 
the diagonal, i.e., 

(
a'p' i 0) 

a'p' ffi a" = ---o---i-~-~ , 

one obtains the elements of the subgroup Kn _ 1 ffi K1 
of Kn. The IR of this subgroup are the direct-product 
representations of the IR (w' ,Iw') of Kn- I and the IR 
(w", [1]) of K I . The multiplicity of these IR of 
Kn _ 1 ffi KI in an IR (w,fw) of Kn is given byI8 

m[(w,jw), (w',jw') x (w", [1])] 

1 I d'i d" 1 =-- a a 
(27T)n aEA n_l a'EA, (n - I)! 

x L X(w,fwl(a'p' ffi a")iW ',fw'l·(a'p,)x(w-,[1]l\a"). 
p'E'C{n_l 

(23) 

Now denoting the weight IV by (w~!) for the sake of 
brevity, the integration over the elements of An_I 

and Al gives zero unless w' = (W~!-~!k) for some 
k :::;; j. In this case, one may assume k = j. Because of 
Theorem 1104, this can always be achieved by changing 
the group of the weight W into an appropriate 
conjugate subgroup without affecting the characters. 
For the IR of the group K n , the standard coset 
generators of the group of the weight 

W=S ffiS ffi"'ffiS ffiS n l n 2 nj_l nj 

may be chosen. A subset of these coset generators 
forms a set of coset generators of the group of the 
weight W' = Sn ffi Sn ffi'" ffi S _ ffi S _ of the 

1 2 n J - 1 nj 1 

IR (w~!-~!i) of K n_ I . Using Theorem IIo4, one 
may assume that this set was chosen to determine 
the character of the IR (w'f.J of K n_ 1 • Putting 

18 Reference 12, p. 86. 

Iw =p . . ·fi-Ifi and Iw' = :(1' .. 'fi-l'fi, the expres­
sion (23) for the multiplicity becomes 

m[(w~!,jy2 .. 'F-Yt 
(w~!-~!j, 'fllf2 . .. 'fi-Yi)(W", [1])] 

_ ~(") (n - I)! 1 
- u W , Wi 

nI ! ... ni-I! (n; - I)! (n - I)! 

x L Xf1f"" f!-1fi(h)x'fl'f"" '';-''ri*(h) 
hEW' 

= c5(w", W ;)c5(fi, 'F X [l])c5fl,'flc5f','f" .. c5fi-l,'fl-l. 

(23') 

From the remarks concerning the coset generators, 
it follows that the sum over m, m' reduces to a sum 
over m = m' after carrying out the integrations. Then 
the sum over p' E Sn_l can be changed to a sum over 
hEW'. The result shows that the IR (w~!,Pf2" ·fi) 
K contains the IR (Wn!-~!i [1 ... [;-If;) of K '+' K n l ,_ n-l W 1 

once and only once if the IR 'I; of Sn_l is contained 
in the IR fi of Sn;. This result is ~ot affected by 
changing the order of the groups Sn ,S ,'" S _ 

I n 2 n J- 1 ' 

Sn,_ and Sn
" 

Sn , ... Sn _ ,Sn --1 which make up W 
2 J-l J 

and W', respectively. Therefore the IR (W~!,f1,f2 .. ·fi) 
of Kn contains theIR (W~!-~lh,P' . ·r-l'fhfh+l . . ·fi) 
of Kn _ l ffi KI once and only once if the IR 'fh of Sn 
is contained in the IR fh of Snh' This proves the n;~t 
theorem. 

Theorem //.5: The chain of groups Kn ~ Kn_1 ffi KI 
is multiplicity-free. 

Note that the IR (w", [1]) of KI is completely 
determined by the IR of Kn and of Kn_1 • Therefore, 
Theorem II.S implies that the chain of groups Kn ~ 
K n _ 1 ~ ••• ~ KI is canonical. One could then choose 
bases which are BIR of all groups in this canonical 
chain. As will be shown later, the IR of K n , when 
using this chain, allow us to determine the IR of Kn 
which transform irreducibly under the groups in the 
chain 
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This chain is needed in applications to the harmonic­
oscillator shell model. The IR of Kn corresponding to 
the canonical chain Kn =:> K n- 1 =:> ••• =:> K1 are 
different from the IR (15) obtained by induction. 
While the canonical chain appears mathematically 
natural, the use of the induced representation leads 
to the factorization of the projection operators (18) 
and also simplifies the reduction K" =:> Sn. This is to 
be discussed in the next section. 

III. CHAIN OF GROUPS K" :::> Sn 

The reduction of representations of Kn in the chain 
K" =:> S" will be seen in Sec. IV to be of considerable 
physical importance and therefore will be discussed in 
detail there. When restricting Kn to Sn' one sees from 
(15') that the IR of Kn become reducible representa­
tions of Sn induced from the IRfw of the subgroup W 
of S". The reduction of representation of a group G 
induced from an IR of a subgroup H of G is known 
to be connected with the reciprocal problem of 
reducing the IR of G to the IR of H. Therefore, the 
simpler reduction S" =:> W is studied first and then 
used in the reduction Kn =:> Sn. 

A. Chain of Groups Sn :::> Sn, if) Sn2 if) ... if) Snj 

This chain of groups has been discussed in particular 
by Kaplan6 and by Horie. 7 In short, denote the IR of 
W = S if) S if) •.• if) S by n 1 n2 n J 

(fwi' wi h Ifwr w), hEW, 

with fw and r w defined as in Eqs. (12) and (12'). 
The Young operator7 for this IR is given by 

c~:'rw = If wi L (jwr~1 h Ifwrw)*h. (24) 
IWI heW 

There exist transformation brackets which relate the 
IR 

(ji'lp Ifr), p E Sn 

of Sn to an equivalent IR which is reduced with respect 
to the subgroup W of Sn, i.e., brackets such that 

(ji'l p IIr) = _L (pi ipJ,vi'w)<frPj~i'wl p IhIwrw) 
'l'l",rw 
cpfwTw 

X (cpfwr wi Ir), (25) 

where ip, cp distinguish between repeated IR of W 
and where, for hEW, 

(fip/wi' wi h Ifcpfwi' w) = O"'I'0J'wfu.(fwi' wi h Ifwr w)' 

These transformation brackets are related to the matrix 
elements of the Young operator in the representation 
fof Sn by 

(frl c;~'rw Ifr) = 2 (ji' I q;fwr~)<q:fwr wi fr), (26) 
'I' 

as can be verified using Eq. (25). Assuming the trans­
formation brackets to be elements of a unitary matrix, 
one has 

r 
This is a system of linear homogeneous equations for 
the transformation brackets. The number of possible 
solutions, which differ only in the label cp, can easily 
be determined by summing both sides of Eq. (26) 
over i' = r and over r~ = r w to obtain 

If wi L xl (h)x'w*(h) = IIwl' L 1. (27) 
IWI hEW 'I' 

On the left-hand side, the multiplicity m(f,fw) of the 
IRfw of W in the IRf of Sn multiplied by If wi appears, 
so that the number of possible values of cp is given by 

(27') 

To solve the system of equations (26) for the 
transformation brackets the matrix elements of the 
Young operator (24) of W in the Yamanouchi 
representation of Sn are needed. These matrix elements 
can be evaluated by a general method which may be 
illustrated for the case W = Sn if) Sn . Following 

, 2 

Kaplan and Horie, write the Yamanouchi symbol 
r = (r1r2 ••• r n) of the row of the IR of S" as 

where Sl is the Yamanouchi symbol of the row of the 
IR of S", referring to numbers 1,2, ... , nl and where 
ql denotes the remainder of r. An element of W = 
Sn if) Sn can be written as hlh2 with hI E Sn and 

I 2 , 

hI E Sn
2 
where hI and h2 are taken to be n x n matrices. 

The IR of W can be denoted by fw = 'J1'J2 andits rows 
by r w = rl'2' The matrix elements of the Young 
operator of this IR of W in the Yamanouchi repre­
sentation of Sn is given by 

x <:F'r11 hI Ij l rl )*<:r'r2 1 h2 1'I2r2)* 

= 0/:1'°",:r,°I','I'08]or, 

The sum over hI E Sn can be evaluated since S is a , n, 
member of the canonical chain. To evaluate the 
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remaining sum over h2 E Sn
2

, introduce a subgroup 
S~2 conjugate to Sn2 by 

Sn2 = qS~2q-\ q-1(n - n2 + s) = s, 
s = 1,2, ... , n2 • 

Then by definition for h2 = qh~q-1 E Sn2, h~ E S~2' 

('j2'r21 h21'f2r2) == ('j2'r21 h; 1:r2r2)' 

Introducing h2 = qh~q-1 in Eq. (28) and decomposing 
the IR of Sn' one may now perform the sum over 
h2' E S' ,since S' is a member of the canonical chain 

n2 n2 

Sn => Sn-1 => ••• => Sl' to obtain 

( I'fj-1 I 'f"f2 licf1 ) 
JJ Sli/I c'r,'r2.r,r, J Slql 

= b!','f,bf,,'/bslo'r, bslor/)(j,fl:r2) 

X L (f'pr/il l q If:r2 'r2q2) 
02 

X (f:r2r2q21 q-l If'flrlQl)' (28') 

Here r2q2 is defined similarly to rlql, but, with 
respect to S~2 and b(f,P'j2), is one if the IR 'f2 of 
S' is contained in the IRf of Sn and zero if otherwise. 

"2 
The matrix elements of the Young operator are now 
expressed in terms of the matrix elements of the 
single permutation q in the Yamanouchi representa­
tion. It is clear that this nonrecursive method can be 
generalized in the chain Sn => Sn, EEl Sn2 EEl ... EEl Snj' 
so that the coefficients in the system of equations (26') 
for the transformation brackets (cpj~r wi fr) are 
known. Recursive methods for obtaining the trans­
formation brackets have been discussed by Horie.7 

It should be noted that the present treatment of the 
chain Sn => Sn, EEl Sn

2 
is based essentially on the 

existence of a canonical chain Sn => Sn_l => ••• => SI' 
and therefore may be applied to other matrix groups 
which admit a canonical chain Gn => Gn _ l => ••• => 

Gl . Since this applies in particular to the group K n , 

the reduction Kn => Kn, EEl Kn2 can be achieved by 
expressing the matrix elements of the corresponding 
Young operator in terms of the matrix elements of the 
permutation q in the representation corresponding 
to the canonical chain Kn => Kn- l => ••• => Kl . 

B. Chain of Groups Kn => Sn: Reciprocity 

The IR of Kn constructed in Sec. lIB, when restrict­
ing Kn to Sn, become induced representations of Sn: 

(fwi' wml P Ifwr wm) 

= (fwi' wi C
'
iiPC:;;,1 Ifwr w)b(CliiPC:;;'\ hEW). (29) 

To reduce them to IR of Sn' apply the Young operator 

c:r = J1L L (FI P Ifr)*p (30) 
ISnl PESn 

for the IR f of S" and assume that there are transforma-

tion brackets (fwr wm I iffr) which perform the 
reduction with if, a multiplicity index. Then 

(fwi'wml c/rlfwrwm) 

= I (fwi' wm I ifF)(iffr I fwr wm), (31) 
'P 

which, analogous to Eq. (26), can be changed into a 
system of linear homogeneous equations for the 
transformation brackets. To evaluate the matrix 
elements of the Young operator, use the b in Eq. (29) 
to change the sum over p E Sn to a sum over hEW 
by putting h = CmPC-;',I. Then 

<fwi' wlnl c~r ifwr wm) 

= ill L (fw i'w I h Ifwrw)(FI c;F/hcm Ifr)* 
ISnl hEW 

= J1l L [(frl c;/ Ifr')(fi"1 C,I' IF) 
ISnl r'"r' 

X L (fr'l h IF')(fwr wi h Ifwi' w)*J, (32) 
hEW 

using the unitarity of the representations. The sum 
appearing in the square brackets can be written in 
terms of the transformation brackets of the preceding 
section as 

L (fr'l h IF')(fwrwl h If,J'w)* 
hETV 

= ~~II ~ (fi" I cpfwr w)(cpfwi' w I F). 

Then the matrix elements of the Young operator 
become 

(fwi' wml c~r I fwr wm) 

= I~~I·.II~~I ~ [{~(frl c:;;,llfr')(fr'l CPfwrw)} 

x {f (cpfwi'w IF')(fi"1 C,ii IF)}} (32') 

Before discussing this result any further, we sum 
over i'w = rw and i' = r, In = m and we do the same 
in Eq. (32). Since both expressions are equal, one 
finds 

If I L 1 = If I L 1, (33) 
'" if! 

or, in terms of the multiplicities, 

m(fw,f) = m(f,fw)' (33') 

Theorem II!.! (Frobenius reciprocity theorem)19; The 
multiplicity m(fw ,f) of the IR f of Sn in there presenta­
tion induced by the IR fw of the subgroup W of Sn 
equals the multiplicity m(f,fw) of the IR fw of W 
in the IRf of Sn. 

In the present case of W = Sn, ffi Sn2 EEl ... EEl Snj' 

,. G. Frobenius, Sitzber. Preuss. Akad. 501, (1898). See also 
Ref. 16, p. 80. 
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the multiplicities of IR of Sn are easily found by 
applying Littlewoods rules20 to the product of 
partitions 

JI xf2 X .,. xji. 

Now, comparing the two expressions on the right­
hand side of Eqs. (31) and (32') it can be seen that the 
transformation brackets in Eq. (31) can actually be 
identified as a factor with the curly bracket expressions 
in Eq. (32'). With an appropriate choice of the factor 
the result is 

(fwr wm I <pir) 

[ 
lil'IWIJi , 

= ISnl'liwl f, (<piwr wi ir )(jr'l em lir), (34) 

where rp can now be identified with <P because of 
Theorem IlL I. 

Theorem II!.2 (Extended reciprocity theorem): The 
matrices which reduce the representation of Sn 
induced by the IRfw ofthe subgroup W of Sn to IRf 
of Sn are given in terms of the matrices which reduce 
the IRf of Sn to IRfw of Wand in terms of the mat­
rices of the coset generators of W in the IRf of Sn. 

Note that the proof of this theorem employs the 
orthogonality of the bases C-;;,l Ifwr w> of the induced 
representation. 

IV. GROUP Kn AS A SUBGROUP OF THE 
UNITARY GROUP Un: APPLICATIONS 

OF Kn 

The elements ap of Kn are unitary matrices and 
therefore form a subgroup of the group Un of unitary 
n x n matrices. The reduction Un ;:) Kn is of general 
interest since Kn may be used as an intermediate 
group in the chain Un;:) Sn. Moreover, it will be 
shown that there is a direct relationship between the 
chain of groups Un;:) Kn ;:) Sn and the harmonic­
oscillator shell model. 

A. Multiplicity of IR of Kn in IR of Un 

First recall some properties of the unitary group Un 
in n dimensions. An IR of Un is characterized by a 
partition [h1hz '" hn ], where the numbers h. are 
nonnegative integers fulfilling hI ~ hz ~ ••. hn ~ O. 
By restricting the unitary n x n matrices to the 
direct sums of unitary (n - 1) x (n - J) matrices 
and an element of value one, a subgroup Un- 1 EB lof 
Un results. The chain of groups Un ;:) Un_I;:) ... ;:) 
U1 constructed in this way is canonical.21.22 The 

20 D. E. Littlewood, The Theory of Group Characters (Oxford 
University Press, London, 1940), p. 94. 

21 M. Moshinsky, J. Math. Phys. 4, 1128 (1963). 
22 G. E. Baird and L. C.Biedenharn, J. Math. Phys. 4,1449 (1963). 

partitions [h1mh2m '" hmml of all subgroups U m' 

1 :::;; m :::;; n - 1 may therefore be used to determine 
the rows of the IR of Un. These partitions are subject 
to the restrictions21.22 

hIm ~ h1m- 1 ~ hZm ~ h2m- 1 ~ ••• ~ hm- 1m- 1 ~ hmm · 

(35) 

The corresponding BIR are Gel'fand23 states derived 
explicitly by Moshinsky.21 A Gel'fand state is also 
characterized by a weight 

w = (WI, WZ, ••• , w"), 

which determines the IR of the subgroup An of Un. 
The weight components are given in terms of the 
partition numbers as 

! t-l 

1 :::;; t :::;; n - 1: wt = L hst - L hSt- 1 , 
8=1 8=1 
n n-l 

W" = L hs - L hsn- I • (36) 
s=1 8=1 

To find the multiplicity of an IR of Kn in an IR 
of Un' one may use the characters of both groups. 
The character of an element u of Un is a symmetric 
polynomial in the eigenvalues £1, €a, ••• , €n of u. 
Wey124 has given several forms for this polynomial. 
A particular form of the character of Un can be given 
by using the chain of groups Un ;:) An. The characters 
of an IR of the group An for the diagonal unitary 
matrix with entries €s are given in terms of the weight 
w as 

X
(w\w2

, ••• • wn
)(€ € ... € ) = ~WI~W2 ••• ~wn 

1 2 n ~1 ~2 ~n • 

Since An is a subgroup of Un' the characters of the 
IR of both groups are related by 

X[h 1h 2 ' •• hn]( €1€2 ••• €n) 

= L m([hlh2 ... hnJ, W)XW
(€1€2' •• €n) 

w 

= L m([h1h2 ' •• hnl, (wI, w2
, ••• , wn» 

(W1,W2, ••• • wrt) 
1 2 n 

X €w €~ .. , £~, (37) 

where m([hlh2 ... hn ], w) denotes the multiplicity of 
the weight w = (wI, w2 , ••• ,wn). This multiplicity 
is determined by the number of solutions of the in­
equalities (35) for the given weight with components 
obtained from (36). 

To reduce the IR of Un to those of Kn, one needs 
the characters of Un for the elements ap of Kn. 
These characters are then polynomials in the eigen· 
values €s of the matrices ap which were discussed in 
Sec. IIA. The multiplicity of the IR (w,fw) of Kn in 

23 I. M. Gel'fand and M. L. Zetlin, Dok!. Akad. Nauk SSSR 71, 
825 (1950). 

24 H. Weyl, Math. Z. 23, 271 (1925). 
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the IR [h1h2 ' •• hn] of Un is then given by 

m([h 1h2 • •• hn ], (w,fw» 

= _1_ r da l.. I X[h l h 2 " 'hnl(ap)x(w,fw)*(ap). 
(27T)n .' aEA. n! PES. 

(38) 

For example, taking a weight w, with all components 
different, from the expressions (21) and (37), for the 
corresponding characters one finds 

m([h1hz ' .. h,,], (w, [1]n» = m([h1h2 ... hn], w). 

(39) 

There is another expression for the characters of 
Un given by Wey}24 which has certain advantages for 
the reduction Un ~ Kn. It employs the well-known 
connection between the IR [h1hz ... hn] of Un and the 
IR [h1hz ' .. hn ] of a group SN where N = hI + h2 + 
... + hn • Introducing the power sums 

n 

a! = L (E.Y, 1= 1,2, ... , n (40) 
s=1 

and denoting the characters of the group S.v for the 
class with cycle structure (l i '2 i2 ••• ) by 

X[h,1/2" hnl(Ii'2i2 ... ), 

Weyl's result is 

X[h,h 2 '" h n l(E
1

E
2

' •• En) 

X[h,h2 "'h"l(li'2i2. .. ) ; ;, L a1'a2- •• '. (41) 
(1;'2i2 ... ) 1iI 2 i , ... ill i 2 !'" 

The eigenvalues Eps of an element ap with p containing 
an m cycle are given by 

E = exp [~ ~ (J.P'] . r s = I 2 . .. I1J (6') Ps £. sm' ",. 
I1J s~l 

Because of the roots of unity rsm , these E.'S contribute 
only to the power sums at with I = 'V • m, 'V = 1,2, .... 

As an example of the use of Eq. (41), suppose that 
the partition [111h2'" h,,] of Vn fulfills hI + h2 + 
... + hn = n and consider an IR of Kn with IV = 
(I, I, ... , I). Then the group of the weight is Sn, 
and the character is given by Eq. (22) with IV = I. 
The n-fold integral over (J.\ (J.2, ... ,(J." in Eq. (38) 
singles out those terms in i hl"2' . ilnl(ap) which are 
proportional to 

exp [i s~ C(J 
Now suppose that p has the cycle structure (I i12i2' •. ni .) 

and consider the jm m-cycles with corresponding angles 
(J.p", S = 1,2, ... , m, t = 1,2, ... ,jm' The contri­
butions of these jm m-cycles to the power sums at 
are of the form 

i", [ m ] a"m = m Lexp IV L(J.P" + .... 
t~l s~l 

The only contributions which are not cancelled by the 
integration must have 'V = 1, i.e., must come from the 
power sum am' Moreover, am has to be taken to 
the power jm to give the contribution 

This argument applies to all cycles of p. Carrying 
out the sum over p E Sn, one then obtains 

m([h1h2 ... hn ], (1 n, [fJ2' .. Inm 
= b[hlh2'" h.l,U,/2· .. In]' (42) 

Using as BIR of Vn the Gel'fand states mentioned 
earlier in this section, one can express the result as 
follows. 

Theorem IV.I (Moshinsky): The special Gel'fand 
statesB with hI + hz + ... + hn = nand w = (I, 
1, ... , 1) are a basis of the irreducible representation 
(1 n, [h1h2 ... I1nD of Kn , and hence a basis of the 
irreducible representation [h1hz ' •• hn ] of Sn. 

This theorem has been derived by MoshinskyB by 
applying permutations to the special Gel'fand states 
without using the group Kn. He showed, by repeating 
the argument for all subgroups V m in the chain 
V n ~ V n-1 ~ ... ~ VI' that the special Gel'fand 
states correspond to the Yamanouchi basis of Sn 
derived from the chain Sn ~ Sn_1 ~ ... ~ Sl' 

B. Group Kn and the Harmonic-Oscillator 
Shell Model 

The group theory of n-particle states in a common 
harmonic-oscillator potential has been developed in 
several papers by Bargmann and Moshinsky9 and by 
Kretzschmar. IO The corresponding Hamiltonian had 
been shown by Baker25 to be invariant under the 
unitary group Van in 3n dimensions. By separating 
transformations affecting the three vector components 
from those affecting the n particle indices,9.10 a 
subgroup <tLa X Vn of Van is obtained. The IR of 
Van, <tLa , and V" are characterized by [Noan-1], 
[h1h2ha], and [h1h2I1ao n-a] , respectively, with N = 
hI + h2 + h3 • The group 91 3 is related to the quad­
rupole-quadrupole interaction introduced by Elliottll ; 

its subgroup :Ra is related to the total orbital angular 
momentum. 

A complete classification of the part connected with 
V n can be given by introducing Gel'fand states 
corresponding to. the chain Vn ~ Vn _ 1 ~ ... ~ U1.26 

This chain, however, does not lead to states with 
permutational symmetry as needed for a systematic 

25 G. A. Baker, Jr., Phys. Rev. 103. 1119 (1956). 
26 P. Kramer and M. Moshinsky, Nucl. Phys. 82, 241 (1966). 
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construction of antimetric n-particle states by combi­
nation of orbital and spin-isospin states. It is clear 
that the group Kn can be used to construct BIR of the 
groups in the chain Un ~ Kn ~ Sn. 

The IR of Kn are characterized in part by the weight 
w = (wI, w2, ... ,wn) up to permutations. For n­
particle states classified according to the chain 
U3n ~ 'tLa X Un' this weight determines the number 
of quanta associated with particles 1,2,"', n.25 

Therefore, if w = (wn lwn2 .•. wni) denotes the stand-
ard weight (11), the numbers nl , n2, ... ,nj are the 
occupation numbers of the shells 1,2, ... ,j, char-
acterized by a number WI, W 2 , ••• , Wj of quanta per 
particle. Then one has the following theorem. 

Theorem IV.2: n-particle states classified according 
to the chains of groups 

U3n ~ 'tL3 X Un, Un ~ Kn ~ Sn 

correspond to a multishell configuration as defined 
by Kaplan.6 

The group Kn may therefore be called the symmetry 
group of the harmonic-oscillator shell model. To 
obtain states with permutational symmetry, the 
reduction Kn ~ Sn discussed in Sec. III can be used. 
Applications of the method are discussed elsewhere.27 

The character technique developed in Sec. IVA 
together with Littlewood's rules admit the determina­
tion of the permutational content for an IR 

[hIh2h30n-3] 

of Un and, correspondingly, [hIh2h3] of 'LLa in a muIti­
shell configuration. This allows the extension of the 
results of Elliottll and Kretzschmar, 10 who studied the 
same problem with different methods. 

The use of the chain of groups Un ~ Kn ~ Sn 
leads to a factorization of the harmonic-oscillator 
fractional-parentage coefficients as discussed in 
Ref. 27. To write n-particle states with total number 
of quanta N in terms of products of nrparticle states 
with total number of quanta NI and n2 (= n - nl)­
particle states with total number of quanta N2 = 
N - N1 in a common harmbnic-oscillator potential 
requires finding the transformation brackets which 
connect the chains of groups 

U3n ~ 'tL3 X Un, Un ~ Kn ~ Sn, (43) 

U3n ~ Uan1 ffi U3n2 ~ ('tL; X Un) ffi ('11,; X U n2)' 

Un1 ~ Knl ~ Snl' Un2 ~ Kn2 ~ Sn2' (43') 

27 P. Kramer and M. Moshinsky, in Group Theory and Its Appli­
cations, E. M. Loebl, Ed. (Academic Press Inc., New York, 1968). 

As an intermediate chain one may use 

U3n ~ 'lL3 X Un, 

Un ~ (Un ffi Un) ~ (Kn ffi Kn) ~ (Sn ffi Sn)· 
1 2 1 2 1 2 

(43") 

By passing first from Eq. (43') to (43") and then from 
(43") to (43), the over-all transformation bracket 
factorizes into a general Wigner coefficient of 'lLa 
and a transformation coefficient connecting different 
chains of subgroups of Un' This latter coefficient 
admits two more factorizations by introducing the 
steps 

Un ~ Kn ~ Sn ~ Sn-1 ~ ... ~ Sn, (44) 

Un ~ Kn ~ Sn ~ Sn , ffi Sn2, (44') 

Un ~ Kn ~ (Kn, ffi Kn) ~ (Sn , ffi SnJ (44") 

The first step from (44) to (44') requires the use of the 
results of Sec. III. The second step implies the reduc­
tion Kn ~ Kn ffi Kn , briefly discussed in Sec. IlIA. 

1 2 

Further study of the canonical chain of groups 
Kn ~ Kn- I ~ ••• ~ Kl is needed to find the corre­
sponding transformation brackets. From the general 
remarks of this section, one sees that the group Kn 
in the chain Un ~ Kn ~ Sn provides an important 
tool for the construction of n-particle states in the 
harmonic-oscillator shell model, and therefore also for 
the determination of harmonic-oscillator fractional­
parentage coefficients in multishell configurations. 

In the chain Un ~ Sn' use of an intermediate 
group may correspond to different nuclear models. 27 

Another such intermediate group is the orthogonal 
group On in n dimensions in the chain Un ~ On ~ 
Sn-10 •26 A simple modification of this chain leads to 
translational invariant states,26 much as the present 
chain leads to shell-model states. 
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A set of matrix equations is derived which yields the statistical mechanical properties of a system of 
~on?me~s and.dim~rs on a recta~gular lattice in the thermodynamic limit. As the matrices are strictly of 
mfimte dImenSIOnalIty, the equatIOns cannot be solved directly, but if they are restricted to be of finite 
and quite small dimensionality, very good approximations to the thermodynamic properties are obtained. 

1. INTRODUCTION 

One problem in statistical mechanics that has 
received attention in recent years is that of evaluating 
the number of ways of fitting dimers on to a plane 
rectangular lattice so that each dimer occupies two 
adjacent lattice sites and no lattice site is occupied by 
more than one dimer. 

In the case when the lattice is completely filled with 
dimers, Kasteleyn1 has shown that the system is 
equivalent to the Ising model in zero-magnetic field. 
It follows that the thermodynamic properties of the 
close-packed dimer system can be obtained exactly, 
and this has been done by Kasteleyn,1.2 Temper/ey 
and Fisher,3 and very recently by Lieb.4 However, 
no solution of the general problem of an arb.itrary 
density of dimers is as yet known. 

In this paper, it is shown that in the thermodynamic 
limit the properties of the system of dimers and 
monomers (sites not occupied by a dimer) may be 
regarded as given by a set of matrix equations, where 
the matrices are of infinite dimensionality. Although 
it has not been found possible to solve these equations 
exactly, their derivation suggests that good approxi­
mations to the thermodynamic properties should be 
obtained by restricting them to be of finite and quite 
small dimensionality, and this is in fact found to be 
the case. 

2. TRANSFER MATRIX 

The transfer matrix of a monomer-dimer system 
has recently been obtained by Lieb. 4 However, for 
present purposes it is convenient to derive it in a 
slightly different form, which lends itself more 
easily to the subsequent variational approach. 

Consider a rectangular lattice of m rows and n 
columns, with cyclic boundary conditions. Then, any 
arrangement of dimers on this lattice can be defined 
uniquely by specifying whether each bond, linking 
two adjacent lattice sites, is or is not occupied by a 

1 P. W. Kasteleyn, J. Math. Phys. 4, 287 (1963). 
• P. W. Kasteleyn. Physica 27, 1209 (1961). 
a H. N. V. Temperley and M. E. Fisher, Phil. Mag. 6,1061 (1961); 

M. E. Fisher, Phys. Rev. 124, 1664 (1961). 
, E. H. Lieb, J. Math. Phys. 8, 2339 (1967). 
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dimer. This specification can be given a mathematical 
formulation by associating two sets of parameters 
ex;j and PH with the horizontal and vertical bonds, 
respectively, such that (Xij corresponds to the hori­
zontal bond between sites (i,j - 1) and (i,j), and 
Pij corresponds to the vertical bond between sites 
(i - l,j) and (i, j). If each of these parameters is 
assigned the value 0 when the corresponding bond 
is not occupied by a dimer, and the value 1 when it is 
occupied, then any set of such values of the exii and 
Pii corresponds to a unique arrangement of dimers on 
the lattice, and vice versa. 

The condition that no lattice site be occupied by 
more than one dimer can be incorporated into this 
formalism by noting that the four bonds which have 
the lattice site (i, j) as an end point correspond to the 
parameters rJ.iJ , rJ.i.i+l, Pi}, PHI.}, so that not more 
than one parameter of this set can be equal to unity 
for each site (i,j). Allowing for the fact that each 
bond occurs in two such sets, it follows that if an 
"activity" S2(t2) is associated with each horizontal 
(vertical) dimer, then the partition function of the 
system can be written as 

z = ~ II K(rJ.ij, rJ.i.Hl/ Pij' PHI,f)' (2.1) 
{aJ,{p} i,i 

where the summation is over all values (0 or 1) of the 
parameters exij , Pi}' and the function K( rJ., ex' I P, P') 
is defined by: 

K(ex, ex' I p, P') = 1 IF ex, ex', P, P' ARE ALL ZERO, 

= S IF rJ. OR ex' IS UNITY, THE 

OTHER 3 PARAMETERS 

BEING ZERO, 

= t IF {J OR P' IS UNITY, THE (2.2) 
OTHER 3 PARAMETERS 

BEING ZERO, 

= 0 IF ANY TWO OF THE 

PARAMETERS ARE UNITY. 

If the single symbol Ti is used to denote the n 
parameters {Ji!, .•• , {Jin corresponding to the vertical 
bonds between rows i-I and i, Eq. (2.1) can be 
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written in a more illuminating form as 

Z = I VTlT2 VT2T • ••• VTmTl , 

where 
Tl,"',1m 

n 

= I ITK(OCi ,ocHl I{3i,{3i), 
al ... an ;=1 

(2.3) 

(2.4) 

the cyclic symmetry implying that OCn+1 is the same 
as oc1 • 

It is apparent that the quantities VTT , may be 
regarded as elements of a 2n by 2n matrix V, so that 
(2.3) is simply 

Z=TrVm, 

and in the limit of m large this implies that 

z,....,rm , 

where r is the greatest eigenvalue of V. 

(2.5) 

(2.6) 

The problem of evaluating the partition function of a 
lattice with infinitely many rows has therefore been 
reduced to that of determining the greatest eigenvalue 
of the matrix V, which is known as the transfer 
matrix. It can be shown that the definition (2.4) of V 
is equivalent to that of Lieb,4 so that it is possible to 
obtain r exactly for the close-packed dimer system by 
following his derivation. In the general case, however, 
the problem has not as yet been solved by this 
technique. 

In the absence of an exact general solution it is 
therefore of interest to consider alternative ap­
proaches to the problem of evaluating r. One such 
approach, which relies upon certain properties of the 
appropriate eigenvector of V, will be presented in 
Sec. 3. 

3. VARIATIONAL APPROACH 

As the matrix V is symmetric, it is possible to 
obtain its greatest eigenvalue from the variational 
principle 

r = x'Vx/x' . x, (3.1) 

where the 2n-dimensional vector x is chosen so as to 
maximize the right-hand side of the equation. If x 
is regarded as arbitrary, this procedure is merely a 
restatement of the eigenvalue problem. However, 
certain information regarding the form of x IS III 

fact available, for in the limit of k large, 

(3.2) 

where y is some vector which cannot be orthogonal 
to x but is otherwise arbitrary. 

If y is chosen so that each of its elements is unity, 5 

• If this choice of y does happen to be orthogonal to the eigen­
vector x, there are an infinite number of other ways of choosing 
y so that x is of the form (3.3). 

then on using the definition (2.4) of V and writing 
(3.2) explicitly, it is found that the equation can be 
written as 

x({3l> ... ,(3n) oc Tr {GpPP2 ••• Gp), (3.3) 

where the matrices Gp (i.e., Go and G1) are 2k by 2k 
matrices with elements 

k 

Gtl .. · ~k/~l'''' ~k = I IT K(OCi' oc: I {3i' (3Hl), (3.4) 
Pl' .. Pk i=1 

the parameter {3Hl in the summand of (3.4) being 
identical to (3. 

Allowing k to tend to infinity; the eigenvector x 
is therefore of the form (3.3), where Go and G 1 are 
real, symmetric, infinite-dimensional matrices. It 
follows that if these symmetric matrices are regarded 
as arbitrary, then (3.3) should provide a good trial 
function for the variational principle (3.1). In fact, 
if they are allowed to have infinitely great dimen­
sionality, then the results obtained should be formally 
exact. Further, and more significantly, if the matrices 
are restricted to be of finite and quite small dimen­
sionality, then it should still be possible to obtain 
good approximations to r and the thermodynamic 
properties. That this is the case will be shown in 
Sec. 4. 

On substituting the form (3.3) of x into (3.1), an 
interesting result is found, namely that the thermo­
dynamic limit of the number n of columns becoming 
large can be obtained immediately (remember that 
the limit of the number m of rows becoming large has 
already been taken). If the Gp are taken to be r by r 
matrices with elements G1

1l
, then it is found that 

r = Tr Sn/Tr Rn, (3.5) 

where R is the r2 by r2 matrix with elements 

R).Il/).'Il' = I G1;: G~Il" (3.6) 
p 

and S is the 2r2 by 2r2 matrix with elements 

S~'<Il/~''<'Il' = .2 K(oc, oc' I {3, {3')G1.<,G~~,. (3.7) 
P,P' 

(Throughout this article, the indices oc and (3 are 
allowed to assume only the values 0 and 1.) 

It follows that in the limit of n large, 

r r-..J K
n

, (3.8) 
where 

K = 'YJ/~ (3.9) 

and ~ and 'YJ are the greatest eigenvalues of Rand S, 
respectively. 

If the associated eigenvectors of Rand S are 
denoted by Xlll and P~Il' then the eigenvalue equa­
tions may be written in a convenient form by regarding 
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these quantities as elements of the matrices X and 
P~. These matrices have the same dimensionality as 
the Gp , so that the equations become 

L GpXGp = ~ X, (3.10) 
p 

L K«(X, (XII {3, f3')GpP~,Gp' = 'l]P~. (3,11) 
~'pp' 

(Use has been made of the fact that the matrices Gp 
are symmetric.) 

To complete the equations, it remains to choose 
Go and G I so as to maximize r, and hence K. The 
easiest way to do this is to note that Rand 5 are both 
symmetric matrices, so that the eigenvalue equations 
(3.10) and (3.11) may be regarded as derived from 
variational principles for ~ and 1), respectively. Using 
these principles, it follows from (3.9) that 

Tr X2 Tr I K«(X, (XII {3, {3')P~GpP~,Gp' 
K= ------~,,~'p~p-'------------------

Tr I XGpXGp Tr L P; 
(3,12) 

{J a 

When (3,10) and (3.11) are satisfied, the right-hand 
side of (3.12) is stationary with respect to small 
variations of X and of the Po, so that the condition 
that the GfJ be chosen so as to maximize K implies 
that (3.12) is stationary with respect to small varia­
tions of the G {J when X and P ~ are held fixed. Defining 

g = K Tr L P;/Tr X 2, (3,13) 
a 

it follows that 

I K«(X, (XII {3, {3')P.,GfJ ,Po = ~XGfJX. (3,14) 
a.'p' 

Provided the dimensionality of the five unknown 
matrices Go, G I , X, Po, PI is specified, (3,10), (3.11), 
and (3,14) form a closed system of equations from 
which K may be obtained for given values of sand t. 
Further, these equations may all be regarded as 
derived from a single variational principle, namely 
that (3.12) be stationary with respect to small 
variations of the matrices, 

One rather unsatisfactory feature of the transfer 
matrix techniq ue is that it treats the rows of the 
lattice on a different basis from the columns, and so 
destroys the symmetry that exists between them. It is 
therefore very gratifying to find that this symmetry is 
restored in the above equations. To show this, 
introduce two further matrices Gri and G~ by defining 

(3.15) 

On substituting this expression for P a into (3.12) it 
becomes apparent that K is unaltered by interchanging 
Go and G I with G; and G~, except that K«(X, (X' I p, pi) 
is replaced by K({3, {3' I rx, (X'). Inspection of the 

definition (2.2) shows that this is equivalent to inter­
changing the row and column fugacities S2 and (2, so 
that K is a symmetric function of these variables. 

This symmetry enables a useful simplification to be 
made when sand t are equal (i.e., when the rows and 
columns are given equal weight), for then the G: are 
the same as the G~, and Eq. (3.14) is the same as 
(3.11). As this is the case for which numerical results 
have been derived, it seems worthwhile to write the 
simplified equations explicitly. Defining 

A = Xi, (3.16) 

G = Go, 

H = G I , 

(3.10) and (3.11) become 

(3.17) 

(3.18) 

GA2G + HA2H = ~A2, (3.19) 

GAGAG + s{GAGAH + GAGAG + HAGAG} 

= 1)AGA, (3.20) 

sGAGAG = 1)AHA. (3.21) 

It can be seen from the above equations that not 
only Go and G I , but also X, can be chosen to be real 
and symmetric. It is further found that X is positive 
definite, so that A is real. Equations (3.19)-(3.21) 
can therefore be solved for the real symmetric 
matrices A, G, and H, together with g, 1], and hence K. 

One useful feature of the variational principle (3.12) 
for K is that it enables its derivatives with respect to 
sand t to be evaluated directly in terms of the matrices. 
In particular, if p is the mean number of dimers per 
lattice site given by 

p = (2mn)-I(s~ + tfr) 10gZ (3,22) 

= t(s :s + t :t) 10gK, (3.23) 

then it follows from (3.12) and the above equations 
that when sand t are equal, 

p/(2 - p) = Tr (HA2HA2)/Tr (GA2GA2). (3.24) 

4. NUMERICAL RESULTS 

Inspection of Eqs. (3.19)-(3.21) reveals that they 
are unaffected by applying the same orthogonal 
transformation to each of the r by r matrices A, G, 
and H. It follows that it is possible to choose A to be 
diagonal, and this representation clearly reduces the 
amount of numerical work involved in evaluating the 
various matrix products. Further, if the matrices 

L = GAG + s(GAH + HAG), (4.1) 

M = sGAG (4.2) 
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are defined, then in this representation, Eqs. (3.20) 
and (3.21) can be written as 

CQ= QD, 

where C is the 2r by 2r symmetric matrix 

C = (~ :), 

Q is a 2r by 2r orthogonal matrix of the form 

(

AGA-l ... ) 
Q= ~-! 

AHA-l ... 

(4.3) 

(4.4) 

(4.5) 

[using Eq. (3.19) to ensure correct normalization of 
the columns of Q], and D is a 2r by 2r diagonal 
matrix of the form 

D=17(A 0). (4.6) o .. , 
(The r by r submatrices of Q and D indicated by 

dots do not in principle need to be known, but their 
existence is relevant to the following discussion.) 

In order to complete the equations, it is necessary 
to specify some normalization of the matrix A and the 
matrices G and H (K is of course independent of the 
normalization chosen). If Au and Gll are both fixed 
to be unity, then it was found that the equations 
could be solved by the following iteration procedure, 
given some initial guess at A, G, and H: 

A. Calculate L, M, and C from (4.1), (4.2), (4.4). 
B. Calculate the eigenvalue matrix D and the 

eigenvector matrix Q of C from (4.3). 
C. Arrange the eigenvalues and eigenvectors in 

some prescribed order, which must be fixed during the 
iteration procedure. 

D. Using (4.6) and the condition that Au be unity, 
calculate 'Yj and A from the first r diagonal elements 
of D. 

E. Using (4.5) and the condition that Gll be unity, 
calculate ~ and the elements GAil' HAil of G, H such 
that f1 ~ A (i.e., the diagonal and top right elements 
of G, H) from the first r columns of Q. 

F. Ensure that G, H are symmetric by setting the 
bottom left elements equal to the top right. Then 
repeat the iteration procedure from stage A until it 
has effectively converged. 

For S ~ 0.25 it was found that an adequate initial 
guess for this iteration procedure was to set all the 
elements of A, G, H other than All and Gll equal to 
zero, and that the r by r solution which maximized K 

was obtained by arranging the eigenvalues of C in 
numerically decreasing order (with the exception of 

the 3 by 3 case, where the preferred solution was 
obtained by choosing the first three diagonal elements 
of D to be the first, second, and fourth numerically 
largest eigenvalues). Having obtained solutions for 
three such values of s, it was possible to obtain good 
initial guesses for successively higher values by 
numerical extrapolation. For these latter cases it was 
appropriate to order the eigenvalues of C so as to 
correspond to the initial guesses obtained for them. 
Although the iteration procedure outlined above 
appeared to always converge, its rate of convergence 
decreased with increasing s and for s > 10 it was 
preferable to use a Newton-Raphson method to solve 
the equations. 

The calculations were performed on an IBM 360 
computer using double-precision floating-point arith­
metic accurate to 16 decimal places. A relative error 
for each of the 3r2 equations, represented by (3.19)­
(3.21), was defined as the difference between the 
right- and left-hand sides divided by the absolute sum 
of all the additive terms in the equation (including 
the individual additive contributions to the matrix 
products). The iterations were assumed to have 
converged only when the relative error for each 
equation was less than 10-10 • At each iteration, the 
values of K and p obtained from (3.12) and (3.24) 
were evaluated and no change was observed in their 
first ten significant figures during the last iteration. 
It is therefore believed that the numerical values 
obtained for these quantities are accurate to ten 
significant figures. 

In Table I, the values of K/S obtained from the 
r = 1, 2, ... ,6 approximations for s = 1.0, 4.0, 
10.0, and 00 are given. It is apparent that for each 
value of s, the successive approximations are tending 
to a limit, and that provided s is not large the conver­
gence is very rapid indeed. 

The slowest rate of convergence is obtained when 
s is infinitely large. This case is of particular interest 

TABLE I. The values of K/S obtained from the r = 1, 2, ... , 6 
approximations for S = 1.0, 4.0, 10.0, and 00, together with 
the values obtained by geometric extrapolation from the 4, 5, 

6 results. 

K/S 
r 

S = 1.0 S = 4.0 s = 10.0 s = 00 

1 1.937416664 1.444670083 1.356095932 1.299038106 
2 1.940215341 1 .460590906 1.381143005 1.335033348 
3 I. 940215344 1.460623453 1.381458447 1.337338271 
4 1.940215351 1.460629381 1.381506501 1.337984697 
5 1.940215351 1.460629397 1.381508315 1.338250017 
6 1.940215351 1.460629398 1.381508512 1.338380390 

Extrap-
olated 1.940215351 1.460629398 1.381508536 1.338506344 
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as it corresponds to the close-packed dimer system, 
for which exact results are available.1- 4 In particular, 
it can be deduced from Eq. (9) of Ref. 1 that 

lim K/S = exp (g/7T) = 1.338515152, (4.7) 
s-+ 00 

where g = 1-2 - 3-2 + 5-2 - 7-2 + . " is Catalan's 
constant. 

With this information, inspection of the errors of 
each approximation indicates that they tend towards 
a geometric sequence. If it is assumed that 

(K/s)r-approx = (K/s)exact - ayr, (4.8) 

then the r = 4, 5, 6 solutions can be used to obtain an 
extrapolated value of K/S. This value is also given in 
Table I and it is apparent that when s is infinite it 
agrees with the exact value (4.7) to effectively six 
significant figures. 

In Table II, the estimated true values of K/S and the 
density p for the dimer lattice are given for values of 
S-1 ranging from 0.0 to 5.0. The values of K/S obtained 
from the r = 5 and r = 6 approximations agree to 
10 significant figures for S-1 ~ 0.3, while the values 
of p agree to this accuracy for S-1 ~ 0.5, so that these 
are believed to be the true values. For larger values of 
s, the values given are obtained by extrapolation from 
the r = 4, 5, 6 approximations and differ from the 
r = 6 approximation only in the last figure given 
(with the exception of the value of K/S for S infinite). 

TABLE II. The values of K/S and p for various 
values of S-1. 

0.00 
0.02 
0.05 
0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.80 
1.00 
1.50 
2.00 
2.50 
3.00 
3.50 
4.00 
4.50 
5.00 

1.33851 
1.345384 
1.3580387 
1.38150854 
1.433197282 
1.488879377 
1.547451104 
1.608381870 
1.671357163 
1.802655618 
1.940215351 
2.307013548 
2.700426573 
3.114544308 
3.544765863 
3.987516671 
4.440052963 
4.900283946 
5.366618412 

p 

0.5000000000 
0.497088 
0.4918108 
0.48228188 
0.462353025 
0.4423290570 
0.4226907932 
0.4036382364 
0.3852640483 
0.3506931614 
0.3190615546 
0.2521316647 
0.2003225902 
0.1605891249 
0.1301534490 
0.1067369571 
0.08857621602 
0.07434949046 
0.06308145191 

It is therefore believed that the values listed are in 
error by at most ± 1 in the last figure. 

It is clearly not possible to deduce rigorously from 
the above working whether or not the dimer system 
undergoes a phase transition, but the fact that the 
successive approximations vary smoothly with sand 
tend towards the known results at both the high­
and low-density limits suggests very strongly that no 
transition occurs in this system. 
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